
The Momentum Equilibrium Principle:
Foot Contact Stabilization With Relative Angular Momentum/Velocity

Dragomir N. Nenchev

Abstract— The spatial momentum relation of an underac-
tuated articulated multibody system on a floating base is a
dynamic equilibrium relation between its coupling and relative
momenta. The relative momentum is the difference between the
system momentum and the momentum of the composite-rigid-
body (CRB) that is obtained when the joints are locked. This
relation is referred to as the momentum equilibrium principle.

The focus in this work is on the angular momentum compo-
nent of the momentum equilibrium principle. It is clarified that
the relative angular momentum component can be represented
in terms of the so-called relative angular velocity that is
used as a control input in a balance controller. The balance
controller proposed here is a whole-body controller that has
independent inputs for center of mass (CoM) velocity and base-
link angular velocity control. In addition, the relative angular
velocity control input endows the controller with the unique
property of generating an appropriate upper-limb motion that
can stabilize the system momentum. More specifically, it is
shown that when the relative angular velocity is derived from
the reaction null-space (RNS) of the system, it becomes possible
to stabilize the unstable states with a rolling foot/feet.

The formulation is simple and yet quite efficient — there is no
need to modify the contact model to account for the transitions
between the stable and unstable contact states. There is also
no need to command the upper-limb motion directly. A few
simulation examples are presented to demonstrate and discuss
the properties of the controller.

I. INTRODUCTION

The concept and realization of a balance controller based
on the spatial momentum of a humanoid robot was intro-
duced by Kajita et al. [1] fifteen years ago. The essence
of the proposed resolved momentum control approach was
to specify a reference centroidal spatial momentum and a
reference motion trajectory for one of the end links, e.g.
of the swing-leg foot, and resolve the spatial momentum
equation for the joint velocity of the whole body via a local
two-subtask constrained optimization approach, similar to
that used in the kinematic redundancy resolution [2], [3].
The resolved momentum framework was the result of a pi-
oneering effort toward a velocity-based whole-body balance
control. The control law formulation was flawed, however,
since the reference base-link twist was constrained by the
null space of the main subtask. This led to an undesirable
trunk rotation. In addition, task conflicts occurred that led to
instabilities.

The important role of the centroidal angular momentum
and its rate of change in balance control of humanoid robots
was discussed in [4]. It was shown that the presence of
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Fig. 1. Stabilization with the relative angular velocity (RAV) ∆ω. (a):
An unstable state of the CRB (joints locked) with positive system angular
velocity (ωC > 0). (b): The system cannot be stabilized when the RAV is in
the same direction as the system angular velocity. (c) A necessary condition
for system stabilization is to generate a RAV in the direction opposite to
the system angular velocity.

centroidal angular momentum is equivalent to shifting the
application point of the ground reaction force (GRF) to
a special point called the centroidal moment pivot (CMP)
[5]. Further insight into the role of the angular momentum
component and its relation to the widely used inverted
pendulum models was provided in [6], [7] with a simple
inverted pendulum plus a reaction wheel model. Since then, a
number of balance controllers with angular momentum con-
trol components have been developed, e.g. [8]–[16], which
is not an exhaustive list. The most recent results in balance
control [15], [17], [18] have confirmed the importance of the
centroidal angular momentum, not only for walking on a flat
ground, but also while stepping on a highly irregular terrain.
From this brief overview it can be concluded that centroidal
angular momentum control is an indispensable component in
the whole-body balance control of a humanoid robot.

In this work it is argued that although necessary, the
centroidal angular momentum balance control approach is
not sufficient. This hypothesis is based on the fact that
the centroidal angular momentum can be expressed as the
sum of two components: the composite rigid body (CRB)
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component and the coupling angular momentum one [19].
The CRB component characterizes the behavior of the robot
when all joints are locked. The links are then “frozen”
in a particular configuration that determines the CoM and
the inertia tensor of the CRB [20]. The coupling angular
momentum component, on the other hand, depends on the
joint rates; the joint rates are mapped via the coupling inertia
matrix1 to the centroidal angular momentum. The role of
the coupling angular momentum component and the closely
related concept of the reaction null-space (RNS) in the design
of controllers for various underactuated robots on a floating-
base, e.g. free-floating space robots, manipulators mounted
on a flexible base and macro-mini manipulators (i.e. a small-
size manipulator mounted at the tip of a large-size one) is
discussed in [19].

The aim of this work is, first of all, to highlight the ex-
istence of the momentum equilibrium principle for floating-
base robots. From this principle, the relative character of
balance control can be deduced. The relative character of
balance control with the (linear) momentum component has
been exploited in the so-called zero moment point (ZMP)
manipulation type controllers [23], [24] that make use of a
well-known CoM/ZMP relation. This is also the case with
the more recently introduced ICP/CMP [18] and DCM/VRP
[17] type controllers2 . On the other hand, the relative
character of angular momentum-based balance control has
not been discussed yet. It will be shown here that relativity
in terms of angular momentum gives rise to two independent
control inputs; one of them ensures the control of the net
(the system) momentum, the other one controls the rotation
of the floating base. As already noted, advanced balance
control relies on an appropriate control of the system angular
momentum to ensure walking on irregular terrain and to deal
with foot rotations, as shown e.g. in [15], [18]. The system
angular momentum control is achieved thereby with upper-
body rotation. Note, however that then, the rotation of the
trunk cannot be controlled in an independent way. In contrast,
in the balance controller proposed in this work, the trunk
rotation will be cast as a control task that is independent
from the system angular momentum control task. The latter is
achieved with an appropriate motion of the upper limbs. This
leads to a significant advantage: the trunk can be used e.g. to
accommodate an external disturbance without deteriorating
thereby the system angular momentum control. In this way,
the proposed balance controller is endowed with the unique
property of complying with an external disturbance and, in
the same time, of restoring the balance when the foot/feet
have begun to roll.

Furthermore, it will be shown that the proposed balance
controller can be represented in terms of angular velocity
which leads to a simple structure. As a result, we obtain a
controller that is also very efficient from the computational

1The coupling-inertia matrix is a coordinate form representation of the
so-called mechanical connection. This map plays a substantial role in the
modeling and control of underactuated systems in general [21], [22].

2ICP, DCM and VRP stand for “instantaneous capture point,” “divergent
component of motion” and “virtual repellent point,” respectively.

point and that does not require a general solver.
Finally, it should be noted that although useful for

position-controlled humanoid robots, a velocity-based bal-
ance controller has its inherent limits; it cannot account
for the distribution of the body wrench, for example. A
companion work [25] discusses the design of a balance
controller that is based on the rate of change of the coupling
angular momentum. This controller has the capability to deal
with external disturbances of impulsive character and also,
to distribute the body-wrench in a meaningful way.

This work is organized as follows. Section II gives the
background and introduces the notations. In Section III, the
momentum equilibrium principle is introduced. In Section
IV, the CRB motion trajectory tracking task and its resolution
are discussed. Section V introduces balance control with the
relative angular velocity. In Section VI, the stabilization of
the contacts at the feet is explained. Section VII presents a
case study for balance control on a balance board. Finally,
in Section VIII the conclusions are given.

II. BACKGROUND AND NOTATION

A. Generalized coordinates and quasivelocity

The generalized coordinate vector of a floating-base robot
is denoted by q = (XB ,θ); θ ∈ <n stands for the joint
variable vector, XB ∈ SE(3) is the position and orientation
of the (non-actuated) base (or root) link. The generalized
velocity is defined as a quasivelocity, i.e. as a velocity
expressed relative to a configuration-dependent frame [26].
Note that the quasivelocity is not necessarily the time deriva-
tive of the generalized coordinates. Let VB =

[
vTB ωTB

]T
denote the twist of the base link; vB ,ωB ∈ <3 are the
velocity of a fixed point on the base-link (e.g. the origin of
the coordinate frame) and the angular velocity, respectively.
These and all other quantities are expressed in the inertial
frame. Furthermore, let VM =

[
vTC ωTB

]T
denote a twist of

“mixed” character, where vC is the velocity of the CoM of
the robot. Two quasivelocity vectors can then be specified as
q̇B =

[
VTB θ̇T

]T
and q̇M =

[
VTM θ̇T

]T
. Note that there

is some abuse in the notation: the over-dot in q̇(◦) does not
necessarily imply the integrability of this quantity.

B. The composite rigid body (CRB)

When the joints of the floating-base robot are locked
at a given configuration q, the robot behaves as a CRB.
The centroidal spatial momentum of the CRB is defined as
LC =

[
pT lTC

]T
where p = MvC and lC = ICωB denote

the linear and the centroidal angular momentum components,
respectively, M is the total mass and IC(q)∈ <3×3 stands
for the centroidal inertia tensor of the CRB. With this nota-
tion, the spatial momentum of the CRB can be represented
as

LC(q,VM ) = MC(q)VM (1)

where

MC(q) ≡
[
ME 0
0 IC(q)

]
∈ <6×6
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is the spatial inertia tensor of the CRB;E denotes the identity
matrix.

C. The system and the coupling spatial momenta

The spatial momentum of the floating-base system can
be expressed in different ways depending on the type of
the quasivelocity. When expressed in terms of the mixed
quasivelocity, for example, the system spatial momentum
assumes the form:

LC(q, q̇M ) = LCM (q,VM ) + LCθ(q, θ̇) (2)

= MC(q)VM +HCM (q)θ̇

=

[
ME 0
0 IC(q)

] [
vC
ωB

]
+

[
0

HC(q)

]
θ̇.

From the last term on the r.h.s. it is apparent that only
the angular momentum component depends on the joint
velocity; LCM (q, θ̇) = HCM (q)θ̇ and HC(q)θ̇ represent
the coupling spatial momentum and the coupling angular
momentum of the robot, respectively. Matrix HC(q) stands
for the coupling-inertia matrix w.r.t. the angular motion —
a coordinate form representation of the so-called mechan-
ical connection [21], [22]. The system spatial momentum
LC(q, q̇M ) should be distinguished from the CRB spatial
momentum LCM (q,VM ); they are not equal unless the joints
are locked, or unless a special control is applied s.t. θ̇ → 0
throughout the motion.

Furthermore, from (2) it is apparent that the (linear)
momentum component, besides being independent from the
joint velocity, is also independent from the angular velocity
of the base link. This property yields an advantage in balance
controller design as clarified in [27], see also [28]. Note
that in the analysis in [29], [30], as well as in the resolved
momentum controller [1], the base quasivelocity q̇B was
employed. In this case, there is a coupling between the
joint velocity and the (linear) momentum; this complicates
the design of the balance controller. Indeed, the centroidal
momentum controller in [15] suffered from the coupling
problem, as did the resolved momentum controller. In both
cases, a trade-off control policy had to be employed and thus,
no rigorous stability proof could be devised. This problem
can be avoided when the centroidal spatial momentum is
expressed in terms of the mixed quasivelocity, as above.

D. System angular velocity, centroidal twist and centroidal
quasivelocity

The coupling-inertia matrix HC in (2) can be represented
as the product of the CRB inertia tensor and a Jacobian-
like quantity. Indeed, noting that the CRB inertia tensor is
positive-definite, we can premultiply the lower part of (2)
with I−1

C to obtain:

I−1
C lC = ωB + I−1

C HC θ̇. (3)

Now we can define the quantities ωC ≡ I−1
C lC and Jω(θ) ≡

I−1
C HC . With this notation, the last equation can be rewritten

as

ωC = ωB + Jω(θ)θ̇. (4)

This relation represents the instantaneous angular motion
of the floating-base robot. Note that although ωC has the
meaning of an angular velocity, it does not associate with a
specific physical body; ωC will be therefore referred to as
the system angular velocity. We can also define the centroidal
twist and the centroidal quasivelocity as VC =

[
vTC ωTC

]T
and q̇C =

[
VTC θ̇T

]T
, respectively.

For the sake of completeness, it should be noted that
when the centroidal quasivelocity notation is employed,
both the linear and the angular components of the spatial
momentum become independent from the joint velocity. In
other words, with the centroidal quasivelocity, only the CRB
spatial momentum can be exposed, i.e.

LC(q, q̇C) = LC(q,VC) = LC(q,VM ). (5)

E. Instantaneous motion constraints

The instantaneous motion of the humanoid robot is con-
strained by c constraints at the contact joints, such that

C T
c (q)VM + Jc(q)θ̇ = 0. (6)

Cc(q) ∈ <6×c and Jc(q)∈ <c×n denote the contact map
and the Jacobian in the constrained-motion directions, re-
spectively. Furthermore, there are η unconstrained-motion di-
rections. The respective instantaneous motion is determined
by:

C T
m (q)VM + Jm(q)θ̇ = V m. (7)

Cm(q) ∈ <6×η and Jm(q)∈ <η×n denote the contact map
and the Jacobian in the mobility (unconstrained-motion)
directions, respectively. V m ∈ <η are desired twist com-
ponents for the instantaneous end-link motion along the
unconstrained motion directions. Considering the hands and
feet, c + η = 24. The general case n > c + η, is assumed
here which means that the robot may comprise kinematically
redundant limbs. A detailed derivation of the above relations
is presented in [31].

III. THE MOMENTUM EQUILIBRIUM PRINCIPLE IN
FLOATING-BASE ROBOTICS

Using (1) and (5), the system spatial momentum (2) can
be rewritten as:

HCM θ̇ = MCVC −MCVM . (8)

This relation clearly shows that with the joint velocity, a finite
difference in momentum can be controlled: the system spatial
momentum, MCVC , minus the CRB spatial momentum,
MCVM . The difference will be henceforth referred to as the
relative momentum of the floating-base system.

The above equation represents the momentum equilibrium
principle in balance control of a humanoid robot: the cou-
pling momentum is always in a dynamic equilibrium with the
relative momentum. This principle is quite helpful in balance
controller design. In fact, it has been exploited throughout
the years, but only with regard to the linear momentum
component, first with the so-called ZMP manipulation type
controllers [23], [24] and more recently, with the ICP/CMP
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[18] and the DCM/VRP [17] type controllers. In what
follows, it will be shown how to employ this principle also
with regard to the angular momentum component.

Before doing so, we will recast the momentum equilibrium
principle in terms of spatial velocity. This can be done in a
straightforward manner since the CRB spatial inertia tensor
is positive definite. Premultiply (8) by M−1

C to obtain

M−1
C HCM θ̇ = VC − VM ≡ ∆V. (9)

The term on the left hand-side, referred to as the coupling
spatial velocity, is in balance with the relative spatial velocity
∆V on the right hand-side. When represented component-
wise, the above equilibrium relation assumes the form

0 = vCR
− vCI

, (10)

Jωθ̇ = ωC − ωB ≡ ∆ω. (11)

From the upper equation it is apparent that the coupling CoM
velocity is zero. It is also apparent that the CoM velocity
can be interpreted in two ways: vCI

is of inertial origin,
while vCR

stems from the net system twist that is of reactive
origin. The origins can be distinguished only when the CoM
motion is expressed in terms of acceleration, though [25].
The velocities are indistinguishable, thus: vCI

= vCR
=

vC , ∆vC = 0. Next, note that the lower equation expresses
a dynamic equilibrium in the angular velocities: the coupling
angular velocity Jωθ̇ is in balance with the relative angular
velocity (RAV) ∆ω 6= 0. One arrives then at the important
conclusion that the angular velocity of the system and that of
the base link can be specified in an independent way.

The RAV plays an important role in the stabilization of
unstable states. The concept is outlined in Fig. 1, the details
will be given in Section VI.

IV. CRB MOTION TRAJECTORY TRACKING TASK

Since the angular velocity of the base link can be specified
in an independent way, it becomes possible to assign a
trajectory tracking task not only for the CoM trajectory, as
in the existing balance controllers, but also for the angular
trajectories of the base link. Note that the most advanced
balance controllers that make use of the centroidal spatial
momentum and its rate of change e.g. [15], [17], [18], did
not provide means for tracking arbitrarily assigned angular
trajectories of the base link (i.e. of the trunk); the motion
of the trunk is determined solely by the outcome of the
centroidal spatial momentum control subtask.

Given the reference trajectories of the CRB specified by
V refM (t) =

[
(v refC (t))T (ω ref

B (t))T
]T

, an infinite set of
constraint-consistent joint velocity solutions can be obtained
from (6) as

θ̇1 = −J +
c C T

c V refM +N(Jc) θ̇u. (12)

The notation (◦)+ stands for the pseudoinverse. The second
term on the right-hand side is a null-space term: N(◦)
denotes a projector onto the null space, in this case of the
contact Jacobian. Joint velocity θ̇u is an arbitrary joint ve-
locity that parameterizes the null space. The CRB reference

trajectories can be obtained from a conventional kinematic
control law, e.g.

v refC = v desC +KpCepC , (13)

ω ref
B = ω des

B +KoBeoB . (14)

The notation (◦)des stands for a desired value, epC = rdesC −
rC and eoB denote the CoM position error and the base-link
angular error, respectively. When the contacts at the feet are
stable and the joint-space constraint Jacobian Jc is full (row)
rank, the control law (12) guarantees that VM (t) = V refM (t)
asymptotically, in the same way as in the case of a fixed-base
robot. Note that for the purpose of humanoid robot balance
control, it would be preferable to replace v refC in (13) with a
feedback control law that is based on the ICP/CMP relation.

The control input θ̇1 is useful when the robot is in a double
stance. When in a single stance, the tracking of the desired
foot trajectories of the swing leg could be embedded as a
lower-priority task. To this end, determine the arbitrary joint
velocity vector θ̇u in (12) with the help of the instantaneous-
motion equation (7). The control joint velocity assumes then
the form:

θ̇2 = −J +
c C T

c V refM + J +
m (Ṽ m) ref +N(Jc)N(Jm)θ̇u

(15)

where Jm = JmN(Jc) is the restricted end-link mobility
Jacobian and

(Ṽ m) ref = (V m) ref +
(
JmJ +

c C T
c − CTm

)
V refM .

Reference (V m) ref comprises a nonzero component for the
swing leg:

V refFSW
= V desFSW

+KFSW
EFSW

, (16)

the rest of its components are zeros. Subscript (◦)FSW
stands

for the foot of the swing leg, EFSW
is the error twist, KFSW

is a p.d. feedback gain.

V. RELATIVE ANGULAR MOMENTUM/VELOCITY
BALANCE CONTROL COMPONENT

The above controller cannot be directly employed when
the contacts are destabilized. This problem can be alleviated
by adding a control component for the system angular mo-
mentum. The additional control component can be designed
with the RAV which is a function of the system angular
velocity ωC . To this end, insert (15) into (11) and solve for
the arbitrary θ̇u. Then, insert back into (12) to finally obtain
the enhanced control law as

θ̇ = −J +
c C T

c V refM + J +
m (Ṽ m) ref + J+

ω

(
∆ω ref − ω̃

)
+N(Jc)N(Jm)N(Jω) θ̇ refu (17)

= θ̇ c + θ̇m + θ̇ am + θ̇ n,

where ∆ω ref = ω ref
C − ω ref

B and

Jω = JωN(Jc)N(Jm),

ω̃ = Jω

(
−J +

c C T
c V refM + J +

m (Ṽ m) ref
)
.
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Fig. 2. Block diagram of an RAM/V controller that can be used to stabilize the feet contacts by an appropriate RAV input ∆ω ref . The Inverse kinematics
block calculates the control joint velocity in accordance with (17). The (◦)FSW

components are used only when in a single stance. The X (◦) quantities
collect positions and orientations in 3D, the latter being parametrized in any convenient form.

Reference ω ref
B is given in (14), ω ref

C will be specified
in what follows. The control input θ̇ is composed of four
components arranged in a hierarchical order. The highest-
priority component, θ̇ c, is used to control the instantaneous
motion of the CRB, via the contact constraints. The desired
CRB translational (i.e. of the CoM) and rotational (of the
base link) motion is achieved via the movements in the
leg(s). The rest of the control components are derived from
within the null space N (Jc). These components will not
disturb the main (the CRB) control task. The role of the
second component, θ̇m, is to control the desired motion of
the swing leg, when the robot is in a single stance. The
role of the third component, θ̇ am, is to control the RAV
(or equivalently the system angular velocity since ω ref

B has
been specified) in a way to ensure an appropriate inertial
coupling w.r.t. the desired CRB rotational motion. Note that
such coupling can only be achieved via motion in the arms
since the legs and the upper body are controlled by the first
two components. The last, fourth component, θ̇ n, is used to
enforce the joint velocity/angular constraints. To this end, the
additional control input θ̇ refu can be determined e.g. by the
gradient projection approach with the joint-limit avoidance
potential function introduced e.g. in [32].

Note that when the robot is in a single stance and there
is no desired motion task for the swing leg, the second
component, θ̇m, becomes irrelevant. The motion of the
swing leg will then be determined by the angular momentum
component θ̇ am. This means that the motion of the swing
leg will contribute to the postural stabilization via the system
angular momentum, as does the motion in the arms. This
contribution plays an important role, e.g. when a large
external disturbance is applied to the robot, since the leg
has a significantly larger inertia than that of the arms [25].

The above controller will be referred to as the relative
angular momentum/velocity (RAM/V) controller. The block
diagram is shown in Fig. 2. The desired values for the CoM

motion, the base-link rotation, the swing-leg motion and the
system angular momentum can be specified in an indepen-
dent way. The controller does not account for other important
constraints, such as keeping the ZMP within the support
polygon or the friction cone constraints. Nevertheless, using
the RAV control input ∆ω ref , the controller can stabilize
the feet contacts after their destabilization, stemming e.g.
from an external force or from self-destabilization when
some of the desired inputs are specified in an improper
way (e.g. a large CoM acceleration). Note that to avoid an
overconstrained system, it is recommendable to use the RAV
control input only when the contacts are unstable (this is
shown with the switch in the block-scheme of the controller).

VI. RNS-BASED STABILIZATION OF UNSTABLE FOOT
CONTACTS

Assume the robot has been destabilized, either proactively
or by an external force. This means that the foot (when
in a single stance) or the feet (when in a double stance)
have begun to roll. A swift action is required for contact
stabilization. Such an action can be generated in a straightfor-
ward way with the RAM/V controller introduced in the last
subsection. This will be explained with the help of the simple
sagittal-plane model shown in Fig. 1. Assume the foot rolls
around the toe tip counterclockwise s.t. the system angular
speed ωC > 0. When the joints are locked, the angular speed
of the system equals that of the CRB and of all other links:
ωC = ωB = ωi, i ∈ {1, n}. As a consequence, the relative
angular speed is zero: ∆ω = ωC −ωB = 0. When the robot
links are allowed to rotate, in general the system angular
speed will be different from that of the base link, and thus,
the relative angular speed will be nonzero. For this particular
example, when ∆ω > 0, the foot roll will persist and result
in a fall. On the other hand, when ∆ω < 0, the foot will
start rotating in the opposite (clockwise) direction resulting
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in the recovery of the line contact, and eventually, of a stable
posture.

Furthermore, note that by simply forcing the robot to
behave as a CRB, a neutral response to a destabilization can
be created. In other words, the respective joint motion will
neither increase nor decrease the energy of the system. Such
a response can be obtained by setting the reference system
angular velocity as

ω ref
C = ω ref

B ⇒ ∆ω ref = 0. (18)

This means that the coupling angular momentum will be
conserved at zero, with the following joint velocity:

{θ̇RNS ∈ N (Jω) : θ̇ = N(Jω(θ))θ̇a, ∀θ̇a}.
The null-space N (Jω(θ)) is referred to as the (angular
momentum) reaction null-space (RNS) [19]. It is interesting
to note that forcing the robot to behave as a CRB yields an
arm rotation that is always in antiphase to the foot/CRB roll.
As a consequence of the neutral response commanded via
θ̇RNS , a rocking-feet motion will be obtained. Note that the
robot is completely “unaware” of this motion. Note also that
there is no need to change the contact joint type (i.e. from
line contact to point contact) in the instantaneous motion
constraint (6).

Depending on the energy generated/absorbed during the
destabilization, the rocking motion may diverge and result
in a fall. In order to avoid this and to ensure the stabilization
of the feet contacts, the energy has to be dissipated. This can
be done with the help of the following feedback-type control
law:

∆ω ref = −KoF eoF . (19)

Here eoF is the foot orientation error and KoF is a p.d.
feedback gain. The foot rotation angle is obtained from the
base orientation measured by an IMU sensor and the leg joint
angles measured by the joint encoders.

The above relations are demonstrated with simulations3.
The whole-body model of a small-size humanoid robot
HOAP-2 [34] was employed (we did not use the pitch joint
in the trunk of the robot, though). The robot was placed on
a flat ground in a symmetric posture, the feet being aligned.
The initial posture was stabilized with the asymptotic CRB
trajectory tracking control laws (13) and (14). Throughout the
motion, the CoM was regulated at the initial position, using
the feedback gain KpC = 100. The robot first destabilized
itself by a fast forward bend in the hips. The forward bend
was commanded with a desired hip-pitch angle of 0.2 rad
that had to be achieved within the time interval 0 ≤ t ≤ td,
where td = 0.1 s (we used a fifth-order spline). The feedback
gain for base orientation during the destabilization was set
at zero: KoB (t) = 0, (0 ≤ t ≤ td).

First, the neutral response was simulated. To this end, after
t = td, the base-link orientation feedback gain was gradually
increased to enable the tracking of the desired orientation (the
initial zero hip-pitch angle): KoB (t) = 100, (td ≤ t ≤ tf ),

3The Choreonoid dynamic simulator [33] was used.
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Fig. 3. Pitch angular speed data. The graphs in the top/bottom rows are for
the response without/with feedback control. The end of the destabilization
time interval is shown with the vertical dashed line.

where tf = 1.0 s. The data graphs for the pitch angular
speeds are shown in the top row of Fig. 3. The end of
the destabilization is shown with the vertical dashed line.
During the destabilization, ωB > ωC and thus, ∆ω < 0. The
angular speed of foot roll, ωF , was first negative then became
positive (the rocking motion). After the destabilization, the
RAV ∆ω ≈ 0 in accordance with the reference value. This
determined the neutral response as a CRB. The rocking
motion continued and resulted in a fall. The animated motion
is shown in Part 1 of the accompanying video.

In the next simulation, after the destabilization, the ref-
erence RAV was determined from (19), with a constant
feedback gain KoF = 100. From the graphs in the bottom
line of Fig. 3 it is apparent that the rocking motion was
quickly suppressed (at about t = 0.2 s). Thereafter, the
system angular speed followed that of the base. The robot
arrived finally at the desired base orientation. The animated
motion is shown in Part 2 of the accompanying video.

VII. CASE STUDY: POSTURE STABILIZATION ON A
BALANCE BOARD

The robot4 was placed on a slightly damped (the damping
constant was unity) balance board. High-friction contacts
were employed to avoid a slip at the feet. The RAM/V
controller with the RNS constraint was used to stabilize the
unstable states attained whenever the CoM of the robot was
displaced from the (unstable) set of equilibrium points, i.e.
from the vertical passing through the center of rotation of the
balance board. The CoM motion control task was regulation
in the horizontal direction toward the equilibrium line. The
base-link rotation task was also a regulatory one: keep the
trunk upright. The stabilization of the posture was achieved
with the reference RAV given in (18). The feedback gains
were set at KpC = 100 and KoB = 1.

Snapshots from the simulation are displayed in Fig. 4,
the animated motion shown in Part 3 of the accompanying
video. The graphs are shown in Fig. 5. Note that the initial

4The same robot model and simulation environment as in the previous
simulation was used.
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Fig. 4. Posture stabilization on a balance board under RAM/V plus RNS control. The initial posture is unstable since the CoM is displaced from the
vertical passing through the center of rotation of the balance board. The posture is stabilized swiftly via the upper-limb motion (the trunk is commanded
to keep its upright orientation). At t = 5 s the robot self-destabilizes by a fast forward bend. The final posture at t = 10 s represents a stable, static state.

posture was unstable. It took about five seconds to stabilize
the posture. Immediately after the stabilization, the robot
destabilized itself with a swift forward bent in the hips.
Apparently, the RAM/V plus RNS controller could handle
such type of destabilization as well, s.t. the robot arrived
finally at a stable static posture.

Note that in this simulation, there was no need to employ
the feedback control (19). The RNS input ∆ω ref = 0 was
used throughout the motion. We found that this is related to
the low feedback gain used for the trunk rotation. Further
studies are needed in this direction.

VIII. SUMMARY AND CONCLUSIONS

The theoretical contribution of this work is the formu-
lation of the momentum equilibrium principle for floating-
base robots. From this principle, the relative character of
momentum balance was deduced. It was shown that the
relativity relation is instrumental in finding an answer to the
crucial question in balance control: “how to determine an
appropriate centroidal angular momentum?”

It was shown how to harness the relativity of angular
momentum in the form of the relative angular velocity (RAV)
and to design a balance controller. The proposed RAM/V
controller comprises the following unique properties: (1)
enables the assignment of trunk motion in a desirable way,
independently from the outcome of the CoM-based balance
control task; (2) generates a meaningful arm motion; (3)
stabilizes rolling foot/feet contacts. With a RAV that enforces
a reactionless motion, i.e. a motion derived from the RNS, the
controller is endowed with the capability to absorb relatively
large disturbances. The formulation is simple and yet quite
efficient; there is no need to modify the contact model to
account for the transitions between the stable and unstable
states. The controller is also very fast; there is no need to
employ an iterative solver.

The performance of the RAM/V controller can be further
improved by reformulating it in terms of acceleration, as the
relative angular acceleration (RAA) controller presented in
the companion paper [25]. It becomes then possible to inject
angular momentum damping into the system. The damping
ensures the convergence to a stable contact state, without
the direct involvement of the foot rotation error as in the
rolling foot example in the present paper. It also ensures
a superior balance s.t. the robot is enabled to absorb high-
energy impacts. We have already confirmed this for impacts
that occur when a large external disturbance is applied to the
upper body [25], when landing after jumping and when the

foot steps with high speed over an unknown obstacle. We
believe that the method has a significant potential to be used
in a number of other tasks, which we intend to explore in
our future research.
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Fig. 5. RNS-based stabilization of a HOAP-2 robot model on a balance board. Initially, the CoM is slightly displaced from the vertical equilibrium line
passing through the balance board center, yielding an unstable posture. Stabilization of the base-link requires about 5 s. After that, the robot self-destabilizes
by a fast forward bent. The stabilization property of the controller can be reconfirmed for such type of destabilization. The joints of each limb are numbered
in increasing order starting from the root link (the pelvis).
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