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Abstract— Robot inverse dynamics modeling is performed
mainly via standard system identification and/or machine
learning techniques. In this paper we part from the theoret-
ical framework of First-Order Principles Networks (FOPnet),
combining data-aided learning with basic knowledge to learn
the model of a targeted robot. The framework, previously used
for learning the dynamics of a fixed-base serial manipulator, is
now extended to the learning of the kinematics and dynamics
of tree-structured robots with floating base. Our approach
leverages the principle of compositionality to separate the
main problem into two partially independent modules. The
first defines the robot’s body schema by characterizing its
morphology and topology. The second is dependent upon the
latter and defines the inertial properties of the multi-body
system. To demonstrate the capabilities of the approach, a
simulated humanoid robot with 30 degrees of freedom is used.
We discuss the implementation of our method and evaluate
its estimation and generalization capabilities in comparison
with other common machine learning approaches. Finally, we
present experimental results on a 7-DoF manipulator.

I. INTRODUCTION

A. Robot model learning: state of the art

Control of robotic systems requires models that closely
describe their inherent dynamics. To find such models two
approaches are typically used. The first is system iden-
tification, which estimates the robot’s inertial parameters
using a previously calibrated kinematic model as well as
joint torque and position measurements [17]. Similarly, on-
line estimation methods have been devised to estimate the
inertial parameters; with adaptive control being a well known
example [16]. In contrast, the second approach attempts
to find models of robots solely from data. To date, neural
Networks (NN) are the quintessential representative in this
area, where especially the feedforward [3] and recurrent [13]
variants have provided good local approximations in the field
of robotics. Other approaches include, e.g., locally weighted
projection regression, support vector regression and Gaussian
processes regression, as well as learning by demonstration
[1], [10], [19], [20]. They all require rather large amounts
of data and learn so far only manifolds of the input-output
space.

In contrast to the identification of fixed-base robots, the
process for humanoid robots is not as standardized yet.
For instance, in [8] the static inertial parameters are found
without force/torque measurements based on the free-floating
base link, an inertial measurement unit and joint encoders
measurements. In [21], experimental results on the iden-
tification of physically consistent kinematic and dynamic
parameters of force-controlled biped humanoid robots with
insufficient dynamics excitation are discussed. Authors in
[18] introduce a theoretical framework for the inertial param-
eter identification from force/torque measurements. The work
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in [4] discusses an incremental semi-parametric inverse dy-
namics learning for robots based on a mixture of parametric
rigid body dynamics models and incremental kernel methods.
Likewise, in [11] classical joint-torque-based identification
and the base-link approach are discussed for the identification
of a humanoid robot. Furthermore, [2] presents a method
to estimate the inertial parameters of free-floating systems
in the absence of contact forces. Finally, [9] describes a
framework based on the nullspace of the unmeasured degrees
of freedom for whole-body inertial parameter estimation
using only joint torque. Unlike the previous examples, the
method we introduce here is suited for kinematic trees with
and without floating bases.

A common denominator in robot identification is the
assumption that the kinematic structure and geometry are
known. Lately, researchers have looked at the kinematic
model of a robot as a form of body schema and have
attempted to vest robots with the capability of learning it; see
for instance [6] for a comprehensive review of the concept
of body schema and its application in robotics. In our work,
learning the body schema will be a key element in the overall
definition of the robot model.

B. Contributions
In this work we introduce a method that aims to answer

the following research questions:
• Which measurements are required to fully automate

robot kinematics and inverse dynamics learning based
on knowing only the adjacency graph along with kine-
matic and dynamic first-order principles?

• How to transform robot system identification or end-
to-end learning with meta parameter guessing into an
automated learning scheme that determines both the
structure and dynamical properties of the robot with
minimal information?

Unlike classical system identification, we show that given
only an appropriate set of proprioceptive measurements not
only the inertial properties but also the morphology of the
robot can be learned. In doing this, we extend the FOPnet
framework introduced in [5], where first-order principles
(FOP) distributed in a network of learning modules are
used to learn the inverse dynamics of a manipulator, to
the estimation of the body schema and inertial properties
of general tree-structured robots with revolute joints. We
demonstrate how this estimation can be separated into two
partially interdependent parameter learning modules, while
the network topology is constructed automatically1. The first
is a purely kinematics-dependent problem which, based on a
given robot topology, is used to learn its geometrical proper-
ties; namely, the body schema. The second learning module
corresponds to the estimation of the inertial properties of

1Please note that this paper does not cover that network construction
algorithm as this would go beyond the scope of the paper. A full treatment
of this problem is left for future work.
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Fig. 1: Different schemes to model a robot: (a) classical inverse dynamics identification, (b) an example of the machine
learning approach (here neural networks) to learn robot inverse dynamics, (c) our proposed FOPnet-based approach.

the now characterized multi-body system. Furthermore, we
evaluate the estimation and generalization capabilities of our
framework and contrast it to three purely data-based learning
methods: a feedforward NN, a committee of Extreme Learn-
ing Machines and Gaussian Process Regression. We evaluate
the results with a 30 degrees of freedom (DoF) humanoid and
also show experimental results with a 7 DoF Franka Emika
Panda robot manipulator.

The remainder of this paper is organized as follows. In
Section II, the proposed approach for learning the self of
tree structured robots is outlined. Section III addresses the
proposed parameter learning scheme. Simulation and exper-
imental results are discussed in Sec. IV, using a simulated
30-DoF ATLAS humanoid robot to compare the FOPnet
performance versus that of two selected machine learning
approaches. Results from an experiment on a 7 DoF manip-
ulator are also presented in this section. Finally, conclusions
are drawn in Sec. V.

II. LEARNING THE SELF FOR FLOATING-BASE
TREE-STRUCTURED ROBOTS

A. Preliminaries
First, we define the self as a set

S = {N,A,λ,θ}, (1)

whose elements are the number of degrees of freedom (i.e.
links) N , the adjacency matrix A of the robot defining
the connectivity of the kinematic tree, the morphological
description of every link in the robot λ, and the inertial
parameters of the links θ.

Figure 1 shows how elements of S are found in three dif-
ferent inverse dynamics identification/learning frameworks.
Fig. 1a shows that classical system identification assumes
a known calibrated kinematic model (i.e., N , A, λ) and
mostly focuses on learning θ. In contrast, most machine
learning schemes (Fig. 1b) attempt to estimate the model
introducing a new set of to-be-learned parameters W that
lack correlation to the elements of S. Our approach, Fig. 1c,
considers that only N and A are known initially as well as
what proprioceptive signals should be available to turn clas-
sical system identification into a learning problem, without
requiring exteroceptive signals for further calibration. The
nature of these signals enables the learning and is a direct
consequence of domain-specific first-order principles. In our
case they are (a) a set K of kinematics-related measurements
and (b) a set D of dynamics-related measurements. From
here on, the robot’s body schema is identified in a first
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Fig. 2: General humanoid topology description including rel-
evant measurements, joints are represented with red circles.

learning module exploiting K to learn the vector λ, which
determines the positions and orientations of the joint frames.
Consequently, in the second learning module the dynamical
properties θ of the previously characterized body schema
are learned, given D. After the completion of these learning
modules, an instantiated model of the robot has been found.
Note that the respective kinematics and dynamics networks
can be automatically created from A and the first-order
principles only.

In the beginning, only the topology of the robot, and the
relevant proprioceptive signals are available; see Fig. 2. To
look for the missing elements of S we represent the inverse
dynamics of the robot via a function parametrized by S of
the form:

τ = f(r, ṙ, r̈, q, q̇, q̈;S), (2)

where r, ṙ, r̈ ∈ R6 are the pose of the base link and its
derivatives and q, q̇, q̈ ∈ RN refer to the joint angles,
velocities and accelerations. Within S, λ ∈ R6N is defined
as

λ =
[
λᵀ

1 λᵀ
2 . . . λᵀ

j . . . λᵀ
N

]ᵀ
, (3a)

λj =
[
αj βj γj

(i)pj
ᵀ]ᵀ

, (3b)

where αj , βj and γj are the Euler angles that determine the
orientation of the jth-link’s coordinate system and (i)pj is
the vector that locates this frame relative to the predecessor

1122



link i. Finally, θ ∈ R10N is:

θ =
[
θᵀ1 θᵀ2 . . . θᵀj . . . θᵀN

]ᵀ
, (4a)

θj = [ mj mXj mYj mZj XXj XYj XZj Y Yj Y Zj ZZj ]ᵀ.
(4b)

The first element of θj is the mass of link j, the next three
elements are the first moments of mass around the coordinate
system of link j and the last six entries are the elements of
the inertia tensor of link j, expressed in the frame j.

B. First-order principles
The FOP defining the learning modules can be deduced

from the well known Newton-Euler equations. We apply the
principle of compositionality by decomposing the FOPnet
into three sub-networks. The first models the robot’s body
schema and the other two model the robot dynamics; i.e.:

k = f(q, q̇, q̈;N,A,λ), (5a)
w = g(q,k;N,A,λ,θ), (5b)

τ = w ◦ k. (5c)

In (5a) k represents stacked Cartesian linear and angular
velocities and accelerations, and (5b) and (5c) represent
wrenches and torques, respectively.

C. Characterizing the body schema
Learning λ assigns a specific morphology to the topology

encoded in A. To do this, we use the Cartesian kinematic
measurements of the base link kbase, joint positions, veloc-
ities and accelerations, as well as the twist vector for each
link. Therefore, the set K is defined as

K = {v̇base,ωbase, ω̇base,V1, . . . ,VN , q, q̇, q̈}, (6)

where
Vj =

[
vᵀj ωᵀ

j

]ᵀ
. (7)

Learning happens as we try to reconcile the measurements K
with the kinematic expressions k ∈ R9N , whose elements are
the Cartesian angular velocity ω, acceleration ω̇ and linear
velocity and acceleration v and v̇ for each link. For link j,
with predecessor link i determined by A, the corresponding
building blocks of (5a) are2:

(j)vj = i
jR

ᵀ
{

(i)vi +(i) ωi × (i)pj

}
, (8a)

(j)ωj = i
jR

ᵀ(i)ωi + q̇jzj , (8b)
(j)v̇j = i

jR
ᵀ
{

(i)ω̇i × (i)pj

+ (i)ωi × (i)ωi × (i)pj + (i)v̇i

}
, (8c)

(j)ω̇j = i
jR

ᵀ(i)ω̇i + i
jR

ᵀ(i)ωi × q̇jz + q̈jzj . (8d)

Here zj is the unit z-vector of the jth coordinate frame.
i
jR denotes the rotation matrix expressing the orientation
of frame j in i as a function of the joint angle qj and
parametrized by λj . It is composed of the multiplication of
four basic rotation matrices around the respective x- and z-
axes.

i
jR(qj ;λj) = Rz(αj)Rx(βj)Rz(γj)Rz(qj), (9)

2Notation (j)ωi represents a vector for link i defined in frame (j).

The kinematics network k consists of the following entries3:

kj(ki, qj , q̇j , q̈j ;λj) =
[
vᵀj v̇ᵀj ωᵀ

j ω̇ᵀ
j

]ᵀ
(10a)

k =
[
kᵀ1 · · · kᵀj · · · kᵀN

]ᵀ
, (10b)

with k0 = kbase being measurements from the base link.

D. Representing the dynamics
The definition of S is completed by the determination of

the dynamic parameters θ. To do this, we first look at the
wrench that results from a link’s own inertial properties4

wj,j(kj ;θj) = Wjθj . (11)

Wj is defined as

Wj =

[
v̇j [ω̇j×] + [ωj×][ωj×] 06×6

0 [−v̇j×] [•ω̇j ] + [ωj×][•ωj ]

]
,

(12)
where [·×] is a skew-symmetric matrix made from the
corresponding vector.

[•ω] =

[
ωx ωy ωx 0 0 0
0 ωx 0 ωy ωz 0
0 0 ωx 0 ωy ωz

]
. (13)

Consequently, the total wrench wj acting on link j results
from the effects of wj,j plus the effects of the wrenches wj,k

from its succeeding links, as depicted in eqs. (14).

Tj(λj , qj) =

[
i
jR 03×3

[pj(λj)×]ijR
i
jR

]
(14a)

wj,k(q,wk,k;λ,A) = jT ν(1)
ν(1)T ν(2) · · · ν(N̄−1)T kwk,k

(14b)

wj(ωj,j ;λi,λi+1, . . . ,λj) = wj,j +

P∑
k=j+1

wj,k. (14c)

The number P of succeeding links k can be determined
directly from the A matrix. Moreover, the vector ν =
f(j, k,A), with ν ∈ RN̄ , determines the arranged indices of
all the N̄ links between link j and link k, with ν(N̄) = k.

The corresponding elements of the inter-dynamics network
are the wrenches acting on every link

w =
[
wᵀ

1 · · · wᵀ
j · · · wᵀ

N

]ᵀ
. (15)

Finally, the outputs of the inverse dynamics network, for a
serial chain, correspond to the joint torque vectors given by:

τ = Cw, (16)

with C being a matrix that selects the 6th element of the
wrench vectors, i.e., the torque along the z-axis.

The learning of θ will be driven by the measurements D
which can be either joint torques or wrenches (so far rather
uncommon); that is:

D = {τ1, . . . , τN ,w1, . . . ,wN}. (17)

3To ease notation we drop the left upper index, assuming that a vector
for the jth link is defined in the jth frame, unless otherwise specified.

4Notation wj,k indicates the wrench vector caused by link k on link j.
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III. PARAMETER LEARNING: INSTANTIATING THE SELF

Learning of the missing elements in S is executed ac-
cording to Fig. 3. This scheme stems from the structure of
the model itself, as summarized by eqs. (5). Exploitation
of said structure can be appreciated in the learning of the
dynamics as the topological knowledge allows the separation
of the problem into sub-learning problems that are easier to
solve; namely, legs and upper body. To generate information
to steer the learning, random trajectories are required from
the system, realized via some pure-feedback controller. The
data recorded during the experiments are τ , q, q̇ and q̈, as
well as the twist vector Vj for each link, including the base
link.

The cost function for the kinematics and dynamics learn-
ing modules is the mean squared error (MSE) of m samples
between the measured (supervisory) signals and the corre-
sponding output estimates from the FOP networks.

A. Learning the body schema

The inputs to the kinematics network are the measured qj ,
q̇j , and q̈j for every joint j in the humanoid. Additionally,
kbase is an input for all the joints connected to the base link.
Having A, the morphology is learned by solving optimiza-
tion problems involving a corresponding pair of joints and an
estimated twist vector, eqs. (8a) and (8b) parametrized by the
corresponding λj . Since there are Vj available measurements

for every joint, N optimization problems of the form

λ̂∗
j = argmin

λ̂j

1

2m

m∑
k=1

(
V

(k)
j − V̂ (k)

j

)ᵀ(
V

(k)
j − V̂ (k)

j

)
(18)

are solved in parallel. Knowing λ̂∗
j , the remaining terms of

k can be computed using eqs. (8c) and (8d).

B. Learning the dynamics description

The dynamics FOPnet, eqs. (5b) and (5c), are trained with
inputs λ̂∗, q and k and supervisory signal τ . The optimal
inertial parameters are defined as:

θ̂∗ =
argmin

θ̂

1

2m

m∑
k=1

(τk − τ̂k)ᵀ(τk − τ̂k)

subject to θ̂ ∈ Θ

. (19)

The constraints Θ keep the parameters within physically
interpretable values; e.g., the links’ masses mi and diagonal
elements of the inertia tensor must be strictly positive.

To ease the learning of θ̂, we exploit the now known
body schema of the robot. Three optimization problems are
solved: the first two involve the learning of the inertial
parameters for the right and left legs given the knowledge of
the base kinematics. The third comprises the learning of the
parameters of the right and left arms together with the torso
(marked as upper body in Fig. 3).

1124



Iteration 0

(a)

Iteration 50

(b)

Iteration 100

(c)
Final iteration

(d) (e) (f)

Fig. 4: Body schema estimation from the kinematics FOPnet. (a) Initial estimate (i.e. λ̂0), (b) estimate after 50 training
epochs, (c) estimate after 100 training epochs, (d) final estimated structure, (e) actual ATLAS structure, (f) kinematics
estimation error (k − k̂) histogram.

FFNN

j 2
4

j 2
5

j 2
6

j 2
7

j 2
8

j 2
9

j 3
0

-50

0

50

100

150

(a)

ELM committee

j 2
4

j 2
5

j 2
6

j 2
7

j 2
8

j 2
9

j 3
0

-50

0

50

100

150

(b)

GPR

j 2
4

j 2
5

j 2
6

j 2
7

j 2
8

j 2
9

j 3
0

-50

0

50

100

150

(c)
FOPnet

j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 j 1
0

j 1
1

j 1
2

j 1
3

j 1
4

j 1
5

j 1
6

j 1
7

j 1
8

j 1
9

j 2
0

j 2
1

j 2
2

j 2
3

j 2
4

j 2
5

j 2
6

j 2
7

j 2
8

j 2
9

j 3
0

10
-2

10
0

(d) (e)

Fig. 5: Torque estimation using three machine learning algorithms and the proposed approach. Relative percentage error for
the train, test, and control sets are displayed for: (a) FFNN , (b) Committee of Extreme Learning Machines, (c) Gaussian
Process Regression, (d) FOPnet. (e) The machine learning techniques estimate just the right arm (highlighted).

IV. RESULTS AND DISCUSSION

A. Simulation: body schema and dynamics of a humanoid
A simulated 30-DoF ATLAS humanoid robot was used

to test and validate the performance of our approach. The
simulation consisted of a free-falling robot, i.e. no contact
forces were present. Additionally, as a means to compare the
FOPnet with the performance of purely data-based learning

schemes, three machine learning algorithms were used to
estimate the inverse dynamics of the right arm (joints 24
to 30; see Fig. 5e). The first was a feedforward NN (FFNN)
with one hidden layer and 1000 neurons with tanh activation
functions. The second was a committee of 50 Extreme
Learning Machines (ELM) [7], each with 4000 tanh units in
their hidden layers. The total output of the network was the
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averaged output of the whole committee. The third algorithm
was Gaussian Process Regression (GPR) [14] with square
exponential kernel functions. Random trajectories were gen-
erated for every joint as a motor-babbling of sorts to collect
training data. A set of 63 distinct 10-second trajectories were
sampled at 1 kHz. We then use the first 50 as a data set for
training and testing, i.e. a total of 500,000 data points. The
data are then shuffled to have better data distribution on the
training and test sets. The remaining 13 compose the control
set and are used to evaluate the generalization capabilities of
all the algorithms outside the learned manifold.

We used a 75%/25% test/train set distribution. For the
machine learning algorithms, the input data was scaled to
zero mean and unit standard deviation. To train the FFNN, an
ADAM gradient descent method was used from the Python
package scikit-learn [12]. For the ELM committee, 10,000
distinct data points from the training set were used for train-
ing each of the ELMs in the committee (i.e. 50,000 total sam-
ples). Finally, only 10,000 points were used for training the
GPR since more than this becomes a memory/computation
challenge in a regular desktop computer. In contrast, only
1% of the training set is used to solve the training problems
(18) and (19). The initial conditions for the parameters θ̂0

and λ̂0 were randomly set. An interior point method using
the MATLAB R© function fmincon was used for training. A
mini-batch of 10 samples was used and 10 training cycles,
with the initial conditions at every cycle being the result
of the previous cycle, were executed for both problems. As
mentioned before, the kinematics network was trained first.
The kinematics estimation error k − k̂ for the number of
samples used during training is shown in the histogram in
Fig. 4f. As seen in the figure, all errors have a negligible
value, implying correct estimation. The final λ̂ parameters
also define an estimate of the humanoid morphology. The
results of some intermediate training epochs and the actual
body of the ATLAS robot are shown in Figs. 4a to 4e. Once
the optimal parameters λ̂∗ were found, the dynamics network
was trained. The inertial parameters were constrained to issue
positive masses and positive moments of inertia. After the
training cycles, they converged to steady values. The relative
percentage difference, computed as:

errrelative =
|τj − τ̂j |

max(|τj | , |τ̂j |)
, (20)

is shown in Fig. 5 for the training and test sets as well as
for the FFNN, ELM committee, GPR and FOPnet control
set. The FFNN shows good performance on the test set, as
it belongs to the original sampled space. However, it fails
to provide an acceptable performance on the control set.
The situation is similar with the performance of the ELM.
The GPR exhibits the worst performance in the test and
control sets as the amount of data did not suffice for the
estimation; feeding more data is, however, computationally
challenging. Notoriously, even when the parameters λ̂∗ and
θ̂∗ were trained with a substantially smaller number of
samples, the learned FOPnet model is able to generalize
well to the test and control sets with minimal error. It is
clear that, as the FOP network is based on the physical laws
that dictate the behavior of the system, once the network has
been trained with a small but information-rich training set
its generalization capabilities are superior.

Regarding the performance of the presented machine
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Fig. 6: Convergence of the vector (a) λ̂ and (b) θ̂ for the
Franka Emika Panda arm.

learning methods, we understand that provided further tuning
of their hyperparameters their learning power might be
improved. Nonetheless, said tuning is not straight forward
and in particular not generative. In addition to this, providing
more data may also help improve the generalization capabil-
ities. However, as already mentioned, what is mostly learned
is a local manifold and the complexity of collecting large
amounts of data that can represent the whole input-output
space of a humanoid robots appears to be prohibitive.

B. Experiment: body schema and dynamics of a manipulator
As an additional test we applied our approach on a 7 DoF

Franka Emika Panda arm. Instead of offline batch learning in
this experiment we used stochastic ADAM gradient descent
to enable online learning. The system ran in real time at 1
KHz. The required Cartesian linear and angular velocities
and accelerations were artificially generated using the real
joint noisy measurements from the robot. Fig. 6a shows the
test results. Initial conditions close to zero were given to
all the λ parameters. It can be seen that the parameters
converged after 40 s. The steady-state values obtained are
in agreement with those reported in the robot documentation
[15]. Moreover, the learning of the inertial parameters was
initialized at 100 s, with the estimated kinematics parame-
ters together with the filtered joint torque measurements as
inputs. After the cost, given in eq. (19), has converged, a set
of feasible inertial parameters has been found that mimic the
dynamical response of the system. The convergence of these
parameters is shown in Fig. 6b.

C. Measurement signals
As per the required proprioceptive measurement signals K

and D we do emphasize that the need of sensors that provide
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such signals comes by construction, in the sense that signal
availability is a requirement to enable robots to automatically
learn their own models and adapt them to potential changes.
Moreover, noise can be dealt with, as demonstrated by the
experiment, without affecting the outcome of the learning
by signal filtering. Placement of the sensors and noise
handling are topics that, despite its practical importance
and associated complexity, have a smaller relevance to the
theoretical framework presented in this work.

V. CONCLUSIONS

This paper discussed the modeling and learning of the
inverse dynamics of a humanoid represented as a network or
learning modules. This approach is fundamentally different
from other classical and machine learning approaches, as
the topology and morphology of the robot, i.e. its body
schema, is also part of the estimation. We illustrated how
the FOPnet first-principles come from fundamental kinematic
laws as well as the balance of force and moments acting
on a multibody system. Furthermore, we showed the in-
herent compositionality of the problem by defining learning
modules that compute the robot’s kinematics and dynamics,
and whose parameters correspond to inertial and kinematic
parameters that define the robot morphology. A training
scheme to identify these parameters was described using an
off-the-shelf optimization algorithm. The simulation exper-
iment suggests that FOP networks can accurately represent
the body schema and inverse dynamics of humanoid robots
with a large number of DoF with outstanding learning speed,
accuracy, and generalization capabilities. In contrast, a direct
comparison with three purely data-driven machine learning
algorithms illustrated how purely data-driven approaches fail
to generalize to regions outside the manifold represented by
the training data. Future work will cover the development of
a scheme to learn the number of links N and the matrix A.
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