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Abstract— Changing the grasping posture of objects within
a robot hand is hard to achieve, especially if the objects are of
various shape and size. In this paper we use a neural network
to learn such manipulation with variously sized and shaped
objects. The TWENDY-ONE hand possesses various properties
that are effective for in-hand manipulation: a high number of
actuated joints, passive degrees of freedom and soft skin, six-
axis force/torque (F/T) sensors in each fingertip and distributed
tactile sensors in the soft skin. The object size information is
extracted from the initial grasping posture. The training data
includes tactile and the object information. After training the
neural network, the robot is able to manipulate objects of not
only trained but also untrained size and shape. The results show
the importance of size and tactile information. Importantly, the
features extracted by a stacked autoencoder (trained with a
larger dataset) could reduce the number of required training
samples for supervised learning of in-hand manipulation.

I. INTRODUCTION

For achieving a manipulation task, adjustments to the
initial grasping posture are often required. For example,
after picking up a pen it is necessary to set the pen in the
appropriate position in the hand before beginning to write.
To achieve stability while changing the object’s position
during in-hand manipulation, the current tactile state has to
be taken into account, especially if such movements include
slip or soft materials. Generally, in case the hand or object
have soft surfaces, it is difficult to find analytical solutions
for changing the grasping posture. Moreover, it would be
preferential if the desired behavior could be learned rather
than programmed.

In previous research, the TWENDY-ONE hand, which has
a special mechanical design inherently beneficial for in-hand
manipulation, was used to achieve stable in-hand manipula-
tion by simple interpolation control [1]. However, without
tactile sensor feedback, i.e., the six-axis force/torque (F/T)
and skin sensors, the in-hand manipulation was unstable.
In particular, the final grasp depended on the initial grasp
and if the initial grasping point was not correct the hand
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Fig. 1: (Top row) The hand of the human symbiotic robot
TWENDY-ONE Hand. (Bottom row) The configuration of
TWENDY-ONE Hand and CyberGlove.

dropped the object. Using a neural network (NN) for in-
hand manipulation control, the area of initial grasping points
for which the hand could achieve stable manipulation could
be extended, but the learned network was specific to one
size and shape of the object [2]. In general, even though a
growing number of research on in-hand manipulation exists,
stable in-hand manipulation for variously sized and shaped
objects remains an open research problem.

In this paper we address the problem of versatile in-hand
manipulation by deploying an improved NN design. Feed-
forward NNs and deep NNs are used to enable the robot
to manipulate objects of various sizes and shapes within
its hand. As the robot hand grasps the object, the object’s
size can be extracted, which turned out to be an important
feature to be used as input for the NNs. Hence, the desired
movement is learned from a dataset including touch state and
object size. This paper is an extended version of [3]. In [2][3]
we already showed that the learned controller provides more
robust in-hand manipulation than a pre-programmed, object-
size specific position-controlled approach (i.e. interpolation
control [1]). In the current paper, in addition to [3], cubes
were manipulated to further demonstrate the robustness
for non-round objects. Furthermore, feature extraction by
stacked autoencoder is elaborated on to clarify the effective-
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ness of using deep learning. Additional experiments compare
the performance to using Principal Component Analysis
(PCA). Moreover, in-hand manipulation with objects from
the YCB Object and Model Set [4] are added.

II. RELATED RESEARCH

A. Previous Research on In-Hand Manipulation

Analytical solutions for in-hand manipulation of a sphere
are provided in [5][6], but simplifying assumptions are
made, such as rigid bodies, known geometries, no slip,
point contacts and fingertips with six degrees of freedoms
(DOF). In general, motion planning in complex environments
with multiple constraints is a well-known problem [7][8].
Others have used a data glove to train in-hand manipulation
and form compact grasp representations [9][10]. In [11] a
dataglove and a genetic algorithm were used to learn in-hand
manipulation. A Markov Decision Process for modeling and
planning high-level in-hand manipulation has also been used
[12]. A combination of modeling and machine learning is
also investigated [13][14]. Moreover, enveloping grasps were
investigated [15]. Others have achieved in-hand manipulation
(in particular in-hand rolling and elevation) without sensors
due to specialized robotic fingertips [16]. Often the current
tactile sensor state of the robot is not taken into account.
Yet, the importance of tactile sensing for object manipulation
is well known [17]. Realistic contact modeling for object
manipulation has been attempted [18][19], yet it is still
challenging to achieve. Tactile information has been used
for finger adjustment during in-hand object manipulation
[20][21]. With the aim of more versatile handling, tactile
sensors were used for a rolling contact of an unknown object
[22]. A high-speed multi-fingered hand with a high-speed vi-
sion system has shown skills that exceed human capabilities
for certain tasks [23]. Learning objects’ impedance with the
Allegro hand robustly achieved in-hand manipulation [24].
Reinforcement learning is also useful for manipulation [25].
However, each of those methods requires to learn a model
for each object. In general, even though a growing number
of research on in-hand manipulation has been performed,
in-hand manipulation of variously sized and shaped objects
remains an open research problem.

B. Deep Learning

The multimodal tactile information for in-hand manipu-
lation used in this paper is high dimensional, which can be
problematic for learning. Therefore, dimensionality compres-
sion mechanisms could be beneficial. However, it is difficult
to manually integrate all the information by identifying and
extracting the sensory features from each of the sensory
modalities that are indispensable for robust in-hand ma-
nipulation. Some related research concentrated on PCA for
classifying grasping postures [26]. We believe, however, that
in-hand manipulation includes highly non-linear information
that is difficult to identify via PCA.

Deep learning has recently attracted increasing attention
also in the robotics community and will be used in this
paper and compared to PCA. For example, Andrychowicz

et al. have recently achieved to learn dexterous in-hand
manipultion, but used a setup with 19 cameras [27], while we
focus on learning from tactile information. Considering the
network architecture, we deployed a combination of Stacked
AutoEncoder (SAE) and Feedforward NN to generate con-
trolled in-hand manipulation. In particular, we used deep
learning for the extraction of the features provided to the
feedforward NN.

III. ROBOTIC SYSTEM

A. TWENDY-ONE Hand

The robot TWENDY-ONE [28] has hands which have 16
DOF each, as depicted in Fig. 1. The DIP and PIP joints of
the index, middle and little finger are linked, and the hands
are actuated by 13 small electric motors implemented in the
joints of each finger. Each finger has a fingernail so that
the hand can grasp, for example, a pencil on a desk. The
DIP and MP1 joints also include springs, but there is no
spring for the thumb. For the joints with springs, the actual
joint angles can be calculated as the motor angles minus
the spring displacements. Moreover, a soft skin made from
silicone covers the whole surface of the hands. Therefore,
the hands can compensate an error in the hand posture when
grasping or manipulating an object. Moreover, the hands have
many potentially useful sensors for in-hand manipulation.
241 distributed tactile skin sensors cover the whole surface
of the hand. In addition, 6-axis F/T sensors are included in
each fingertip. Each sensor has 1/256 (8 bit) resolution. The
hand is about 20 cm long and the palm is 10 cm wide. In
this research, only the thumb and the index fingertip were
used, so only the distributed tactile sensors and 6-axis F/T
sensors in those fingertips were used. Consequently, the 3
motors of the index finger and the 4 motors of the thumb
were controlled.

B. Data Collection

There are several methods to get training data for the
neural network. In our case, the fingers of the TWENDY-
ONE hands are moved by tele-operation with a CyberGlove
(22-sensor model from CyberGlove Systems) to record ex-
amples of successful in-hand manipulation. As the human
tele-operates the robot hand, each motion has small differ-
ences, which creates variety for the training set. Amongst
others, the dataglove has three flexion sensors per finger
and four abduction sensors [29]. In order to map the sensor
measurements to the thumb and index finger of TWENDY-
ONE, the most distal index flexion measurement is ignored,
and the proximal thumb flexion and thumb abduction sensor
are added to move the CM2 joint of the robot. The proximal
thumb flexion is also used for the robot’s CM1 joint. For the
other joints of the thumb and index finger there is a clear
correspondence between a sensor measurement of the human
hand and an actuated DOF of the robot. A left TWENDY-
ONE hand and a right-hand CyberGlove was used so that
it is easy for the experimenter to generate motions like in a
mirror.
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Fig. 2: Test setup with XYZ stage.

IV. METHOD AND SETTINGS

A. Experiment Design

The experiment setup is shown in Fig. 2. To control the
positions on the fingertips where the object should be placed,
an XYZ positioning stage was used. The position of objects
can be determined in x, y and z axis in steps of 0.1mm.
The starting position of each trial was chosen randomly by
the experimenter, and it was attempted to gain training data
with as many starting positions as possible so that neural
network can learn effectively. The target movement in our
experiments for various sized and shaped objects is shown
in Fig. 3. The position of the objects should change from
the bottom of the index finger to its side. This movement
was chosen due to its high difficulty among many in-hand
manipulation movements. In particular, it is difficult even
during tele-operation to achieve the goal posture without
dropping the object. In order to gather training data, the
target movement was performed through tele-operation by
dataglove with spheres and cylinders of diameter 20, 40,
and 60mm. As shown in Fig. 4, 2 shapes and 3 diameters
of objects were used for getting learning data. Each one was
manipulated 50 times successfully. 300 success trials were
recorded in total. In order that the neural network can learn
easily, some preprocessing techniques were used. At first,
each of the 300 trials was divided into 50 time steps, resulting
in 15000 time steps in total. Time steps with a low resultant
force were removed to avoid unstable grasps. Furthermore,
random down-sampling was used. When recording the in-
hand manipulation, there are times when the hand does
not move, and this could negatively affect the network
training. Therefore, Euclidian distance was used to cut off
such redundant time steps as much as possible. After using
those methods, 4734 time steps remained, and were used
for training the neural network. The values of all sensor
measurements were normalized to values between -1 and 1.
Concerning the object parameters, the size information also
was normalized (example values in Fig. 4). The object size
was not provided, but when the hand grasps an object, the
object size is calculated using a kinematic model of the hand
and the joint angles. The estimated sizes were used for the
size of objects the neural network learns. Furthermore, the
shape information was coded as -0.8 for the sphere and +0.8
for the cylinder.

Fig. 3: The in-hand manipulation that should be performed,
shown for a sphere and a cylinder. The successful manipu-
lation is that the position of the two fingertips changes from
being on a vertical line to a horizontal line.

Fig. 4: Object setting for learning dataset.

B. Neural Network

A feedforward neural network (FNN) was used. Normally,
the inputs of the FNN for in-hand manipulation include
joint angles and touch states and the network generates the
next time step of joint angles. In this research, size and
shape information of an object are added as inputs for the
FNN as shown in Fig. 5. The hyperbolic tangent is used
as an activation function. The stochastic gradient descent
is used for the optimizer of the FNN with a learning rate
of 0.0001, L2 loss function with L2 regularization (lambda
= 0.0001) and a minibatch size of 100. Initial momentum
for the stochastic gradient descent is 0.5 and it is gradually
changed. After 2000 epochs, the momentum becomes 0.9.
To implement the network, the Theano library for python
and GTX Geforce 580 as GPU were used, also for the
deep learning. As explained in the next section, we also
attempted to use the network (during training and testing)
with a subset of the totally available inputs without size and
shape information, with only size information and with only
shape information. One hidden layer with 100 neurons was
used. The stacked autoencoder (SAE) will be explained in
the next section.

C. Stacked AutoEncoder

As depicted in Fig 5, the input for our Stacked AutoEn-
coder (SAE) has a dimension of 93, i.e., excludes information
about the object’s size and shape. The idea behind SAEs is to
reproduce their own inputs in the output layer throughout the
center layers in which the features are compactly represented
by reducing the number of dimensions in the center layer.
These acquired features are used for the FNN as input instead
of the original input. The number of hidden layers and the
number of nodes in each hidden layer of the SAE depend on
the number of extracted features. The design of the hidden
layers of the SAEs are specified in Table I.

Out of the 15000 time steps recorded, 10000 time steps
were randomly chosen for unsupervised layerwise train-
ing. Although deep learning methods usually require large
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Fig. 5: Top: Stacked AutoEncoder (SAE) for feature extrac-
tion. Bottom: FNN for generating motion. The inputs and
outputs for the two networks are shown. Depending on the
setting, the FNN uses the features calculated by the SAE.

TABLE I: Stacked-Autoencoder Settings

Features Structure of hidden layer

90 90
80 85-80-85
70 80-70-80
60 80-70-60-70-80
50 80-65-50-65-80
40 90-75-55-40-55-75-90
30 90-70-50-30-50-70-90
20 80-60-40-20-40-60-80
10 70-50-30-10-30-50-70
5 70-50-30-10-5-10-30-50-70
2 70-50-30-10-2-10-30-50-70

amounts of training data, the current paper shows that
10000 samples indeed can be enough for learning in robotic
applications. The activation function is the same as for the
FNN. Learning rate and learning decay rate for pre-training
were set to 0.01 and 0.99999, respectively. The number of
epochs was set to 5000. For fine-tuning purposes, learning
rate and learning decay rate were set to 0.1 and 0.999999,
with the number of epochs set to 20000. For the both pre-
training and fine-tuning, the stochastic gradient descent is
used for the optimizer of the SAE with a L2 loss function and
L1 regularization (lambda = 0.00001) and a minibatch size
of 100. Initial momentum for the stochastic gradient descent
is 0.5 and it is gradually changed. After 2000 epochs, the
momentum becomes 0.9. We also attempted to use a stacked
denoising auto-encoder (SdA), as previous experiments sug-
gested this as being beneficial for the tactile sensing using
the TWENDY-ONE Hand. However, using dropout in the
training resulted in higher errors in the reconstructed motions
as verified with test data. Therefore, SdAs were not used in
our current experiments.

V. EVALUATIONS

A. Effect of size and shape

Initially, the importance of different input information was
evaluated. First the usefulness of size information was con-
firmed, and results showed that the object size as determined
from the proprioceptive sensor readings of the initial pose as
the input for the neural net was effective for the performance
of learning and less training epochs were necessary. In this
evaluation, the initial grasping position of the object was
always the same (x=-10mm,y=-10mm) and a sphere-shaped
object with 30mm diameter as the untrained object was used
for this evaluation. When providing the size information,
10000 training epochs were needed. With 10000 training
epochs and size information all the trials were successful.
On the other hand, when the size information was not
provided, after 10000 and even 30000 training epochs, the
target manipulation was not correctly done and sometimes
the hand dropped the object. In particular, without object
size, after 10000 training epochs, regardless of the initial
grasping position, no successful manipulation was achieved.
For 30000 training epochs only 1 out of 10 trials (with
the controlled initial grasping position x=-10mm,y=-10mm)
achieved a successful manipulation. In 9 out of 10 trials
the sphere was dropped from the hand or the required
final posture was not achieved, i.e. the position of the two
fingertips was not on a horizontal line.

Next, we investigated the importance of shape information.
In short, without providing the shape information to the
neural network, reliable behavior could be produced never-
theless. The starting position was the same as before (x=-
10mm,y=-10mm) and the same size of sphere was used.
In-hand manipulation with size and shape and only size
was compared to each other. For size and shape informa-
tion, the number of training epochs was 10000. The target
manipulation was not achieved and also the sphere was
falling from the fingertips. When increasing the number of
training epochs from 10000 to 15000, the successful in-hand
manipulation was done in all the 10 trials. On the other
hand, in-hand manipulation with only size information was
also successful. From this viewpoint, shape information is
not beneficial for in-hand manipulation. On the contrary, if
size and shape information were provided at a same time,
depending on the number of training epochs, the results for
in-hand manipulation can be worse than when providing only
size information. All the results are shown in Table II. An
example of a successful in-hand manipulation is shown in
Fig. 6.

Importantly, in-hand manipulation of objects that are not
grasped at the fingertip’s center is often not successful with
preprogrammed, object-size specific position-control [3], as
already discussed in the introduction.

B. Grasping force with tactile information

In the second evaluation, the tactile information, which can
be acquired by the 6-axis F/T sensors and distributed tactile
sensors in the fingertips, was also found to be important for
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TABLE II: Achievement of the final posture with 30 mm

Provided Information Training Epochs Success Rate
Size, no shape 10000 10/10

No size, no shape 10000 0/10
No size, no shape 30000 1/10

Size, shape 10000 0/10
Size, shape 15000 10/10

Fig. 6: Example of an in-hand manipulation for a sphere of
diameter 30mm. Even though the initial grasping posture is
out of the center of the fingertips (x=-10mm,y=-10mm) the
handling was successful.

in-hand manipulation. In this evaluation spheres of diameter
30 and 50mm were used; the initial grasping position was
x=0mm,y=-10mm. Two settings for the input of the neural
network were compared, the first with providing only the
motor angles and the spring displacements, and the second
with providing the motor angles, the spring displacements,
6-axis F/T sensors and distributed tactile sensors. In all
cases the objects were not dropped from the hand. In the
first setting (without tactile information), the final desired
grasping posture was not achieved with all tested sizes and
shapes, as shown in Fig. 7. With the tactile information, the
desired final grasping posture was robustly achieved in all
4 cases. In particular, Fig. 7 shows some examples of the
in-hand manipulation without tactile information on the left
side and with tactile information on the right side. Without
tactile information, the final grasping posture is not correctly
generated (the two fingertips are not in a horizontal line).
Importantly, the resultant force is higher when not using the
tactile information, which makes sense, as no force feedback
is provided in this case. On the other hand, with tactile
information the final grasping posture is correctly achieved,
and the force magnitude is mostly under 40N.

From these evaluations we could confirm that size and
tactile information is important for in-hand manipulation,
while the importance of shape information could not be
proven. Therefore, for further experiments we used only
size and tactile information as input for the neural network.
Another reason not to use the object shape as information
for the neural network is that it is hard to get the object
shape information from the sensor readings of the hand,
in particular with 2 fingers, while the object diameter can
be determined from the initial grasping posture using only

kinematics.

C. Generalization to untrained objects

In the third evaluation, spheres of diameter 20, 40 and
60 mm and cylinders of diameter 20, 40 and 60mm were
used for training and those of 30 and 50 mm were used for
testing. If the size is below 20 mm, the sphere is so light
that it can stick to the surface of the hand. If the diameter is
over 60 mm, it is barely physically possible for the hand to
generate grasping postures correctly. In results after learning
in-hand manipulation with 20, 40 and 60 mm of spheres
and cylinders, it could generate in-hand manipulation with
spheres of diameter 30 and 50mm and cylinders of diameter
30 and 50mm. As long as the initial grasping posture was
kept within certain limits, the final desired grasping postures
were achieved in all our trials with all sizes and both shapes.
We tested each size and shape combination at least 5 times.

Furthermore, we investigated whether the egg-shaped ob-
ject as a novel shape can be manipulated or not after training
in-hand manipulation with spherical and cylindrical objects.
The egg-like shape objects have intermediate curvatures
between that of spheres and cylinders. The diameters of the
egg-shaped objects are 30, 40 and 50mm. Furthermore, three
initial grasping postures, at the sides, top and bottom, and
diagonally were tested as shown in Fig. 8. We tested each
pose with each size at least once, and also in this case robust
in-hand object manipulation was achieved in all our trials.
In particular, we tested pose B and C ten times each as
we deemed them to be particularly challenging. Despite of
different grasping postures all our trials were successful.

Moreover, cube-shaped objects of diameter 30, 40 and
50mm were used. Three initial grasping postures, at the sides,
diagonally in one axis or diagonally in two axes were tested
as shown in Fig. 8. We tested each pose with each size three
times, and also here successful manipulation was achieved in
all our trials. For the cube shaped object, we assumed pose
B and C to be particularly challenging, but nevertheless they
were robustly manipulated. For comparison, the egg-shaped
and cube-shaped objects in Pose B and C were difficult
to grasp with our stiff gripper in the XYZ stage, which
demonstrates the difficulty of grasping the objects in those
postures. As a further consequence, the experimenter handed
those objects to the robot hand, which may have resulted in
slight variations in the starting position, but it was aimed to
hand the egg and the cube in the center of the fingertip.

VI. EVALUATIONS FOR DEEP LEARNING

A. Feature extraction

In the previous section the raw sensor values were used as
input for the feedforward neural network, and the total input
had a dimension of 93. If the size and shape information are
included, the total input has a dimension of 95. Nowadays,
deep learning methods for robotics show good results in
compressing data and extracting higher level information
from raw data. Robust movements of robots with deep
neural networks were generated in various research, however
for in-hand manipulation, such methods are rarely used. A
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Fig. 7: In-hand manipulation after training with and without the tactile information. Without the tactile information (6-axis
F/T sensors in the fingertips and distributed force sensors in the skin) the final desired grasping posture was not reached in
any of our trials. The resultant force, as measured by the 6-axis F/T sensors in the fingertips, is shown (the range of the
force in the graphs is from 0 to 120N). It can be clearly seen that the force without the information was higher. For reference
reasons, the red line shows 40N, which was never exceeded when using the tactile information. The green line shows the
resultant force in the index finger, the blue line in the thumb. In the cases where the resultant force is different in the thumb
and index finger, probably overload occurred. The starting position in all these trials is the same (x=0mm,y=-10mm).

Fig. 8: An untrained, egg-like shaped object was also used to
evaluate the robustness of the learned in-hand manipulation
skill. This figure shows the different sizes and poses that
were used for evaluation.

reduced input dimension with higher level features can show
improved learning results, in particular less training samples
could be necessary for the supervised learning.

Therefore, in this section we evaluated which number of
features from the stacked auto-encoder (SAE) are useful, and
when used as input for the FNN how many training samples
are necessary with such reduced input dimensionality. Fig.
10 shows the mean squared error of the SAE with different
number of units in the smallest hidden layer (the outputs
of the hidden layer can be used as input features for the
FNN). There are big changes around 20 and 60 minimal
hidden layer size. When further investigating the result, with
20 neurons the error between regenerated and original joint
trajectory is large. Therefore, 60 features is focused for
controlling the actual hand. In the next section we will
evaluate whether the extracted features from the stacked
auto-encoder can produce a good performance when used
as input for the FNN.

Fig. 9: An untrained, cube shaped object was also used to
evaluate the robustness of the learned in-hand manipulation
skill. This figure shows the different sizes and poses that
were used for evaluation.

B. Real time control

The performance of a deep neural network for controlling
the hand was evaluated. In this case, the activations of the
smallest hidden layer of the SAE were used as input features
for another neural network for supervised learning. Accord-
ing to the prior results in Fig. 10, we attempted to use the
SAEs that compressed the raw input to 50 and 60 features,
respectively. Accordingly, the supervised learning had either
50 or 60 inputs. The hidden layer size for the supervised
learning was 100, as in the previous section. Several attempts
with 50 input features for the supervised learning did not
produce stable behavior, but with 60 features reliable object
manipulation behavior could be achieved. We compared the
success of the supervised learning when either using the raw
sensor values (only normalized) or the features provided by
the SAE. Only for the learning with the raw data the object
size was provided in addition. 900 random training samples
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were used for the supervised training. Even though the neural
network with the raw sensor values provided very reliable
results with 4734 training samples, it could not produce
reliable behavior with only 900 training samples. The deep
neural network on the other hand provided robust behavior.
In particular, both the sphere and cylinder with diameter
20, 40 and 60 mm as presented in the last section were
manipulated 5 times each, and all 30 trials were successful
with the features from the deep neural network. In these
experiments, the starting position of the objects was always
in the center of the fingertips. The shallow neural network on
the other hand never produced the wanted behavior. Fig. 12
shows examples of the typical behavior produced with the
deep and the shallow neural network. With the deep neural
network, a smooth motion was performed, which lasted for
about 3 seconds, and then the hand stopped. However, with
the shallow neural network the motion took much longer,
and even after 60 seconds the hand did not stop moving,
and the fingertips were swaying from side to side.

C. Generalization to untrained objects

The generalization capability to untrained objects is inves-
tigated. The objects are randomly placed on the fingertips.
First, spheres and cylinders of 30 and 50 mm in diameter
were manipulated successfully. Egg and cube shaped 30
and 50 mm objects are also manipulated. The network with
60 features from the SAE and 900 training samples could
generate correct motions for untrained objects. From these
results, the network seems to acquire the information of
different sized and shaped of objects from 20 to 60 mm
in diameter.

Furthermore, some real objects from daily life are used
from the YCB Object and Model Set [4]. A golf ball with
42 mm, a rope with 40 mm, a plastic strawberry with
46 mm and a plastic cup with 54.5 mm diameter shown
in Fig.11 were manipulated successfully in all trials (three
times each). Even though they have a rough texture and
complicated shape (especially the rope and the plastic cup
have an asymmetric shape), the hand could robustly achieve
in-hand manipulation. This suggests that the network can
manipulate many real-world objects and does not necessarily
need to consider the shape of the objects for the given task.

D. Comparison with PCA

Another commonly used feature extraction method, princi-
pal components analysis (PCA), was used to be compared to
the SAE. A sphere and cylinder with a diameter of 40 mm are
manipulated 5 times for each. The positions of those objects
are randomly decided. The PCA extracted features with 60,
80 and 90 dimensions with 900 samples and 4734 samples
for 60. As Table III shows, only the SAE could generate
correct in-hand manipulation 10 times. For 60 dimensions
of features extracted by PCA, the motion does not reach
the final posture with 900 and 4734 samples and the hand
sometimes drops the cylinder. For 80 and 90 dimensions
of features extracted by PCA, with 80 features the sphere
is dropped and it fails to reach the final posture with the

Fig. 10: Mean square errors for learning of the SAEs are
generated. The SAE has 2 to 93 dimensions of hidden
neurons. A large change occurs in 60 features as shown. It
may be a sign that extracted information holds important in-
hand manipulation with up to this number of hidden neurons.

Fig. 11: Untrained real-world objects from the ”YCB Object
and Model Set” were correctly manipulated.

cylinder and even 90 features from the PCA could not
generate correct motions but almost correct motions with a
sphere, while dropping the cylinder. From these results, the
SAE is more practical as a feature extraction method than
the PCA.

VII. CONCLUSION

This paper presented a method for versatile in-hand ma-
nipulation of variously sized and shaped objects. The method
enabled the robot hand to generate in-hand manipulation for
objects of sizes and shapes that it had not been trained
with. When using a deep neural network (trained with a
larger dataset), the number of required training data for the
supervised learning could be decreased. The deep network
can extract more effective features than PCA. In-hand ma-
nipulation with real objects was also achieved. These results
suggest daily tasks, for example re-grasping a pencil (even
untrained one) before writing, can be achieved with our
method. In summary, compared to prior results, we have
extended the in-hand manipulation capabilities of the robot
hand.

Within the work presented, we considered and trained
only one specific in-hand manipulation skill. More versatile
capabilities, i.e., a wider range of useful and differentiated
in-hand manipulation skills would be desirable in the future.
As the generation of training data and the learning itself can
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Fig. 12: Examples of in-hand manipulation with 60 features
(top 2 rows) and raw data (bottom 2 rows). The time duration
for both motions is not the same: it took about 3 seconds
with the 60 features to reach a static grasp, but with the raw
sensor values the fingertips kept swaying from side to side.

TABLE III: Achievement of the final posture with 40 mm

Feature Extraction Number of Inputs Samples Success Rate
SAE 60 900 10/10
PCA 60 900 0/10
PCA 60 4734 0/10
PCA 90 900 0/10
PCA 80 900 0/10

be burdensome, it is conceivable that transfer learning from
one in-hand manipulation skill to another is advantageous.
Some recent research also focuses on convolutional neural
networks (CNN) and already established for robot vision, it
might also be useful for tactile recognition. Therefore, using
the CNNs for in-hand manipulation could be one further
promising approach.
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