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Abstract— This paper presents a series of control strategies
for soft compliant manipulators. We provide a novel approach
to control multi-fingered tendon-driven foam hands using a
CyberGlove and a simple ridge regression model. The results
achieved include complex posing, dexterous grasping and in-
hand manipulations. To enable efficient data sampling and a
more intuitive design process of foam robots, we implement and
evaluate a finite element based simulation. The accuracy of this
model is evaluated using a Vicon motion capture system. We
then use this simulation to solve inverse kinematics and compare
the performance of supervised learning, reinforcement learning,
nearest neighbor and linear ridge regression methods in terms
of their accuracy and sample efficiency.

Index Terms— Grasping and Manipulation, Teleoperation,
Novel mechanism design

I. INTRODUCTION

Over the years, soft robot hands and grippers have been
designed from a wide range of materials [1] and actuators
[2][3]. The advantages of such soft designs over rigid robot
hands range from robust grasping [4][5] to being lightweight
and inherently safe [6]. However, in order for soft robots to
become more widespread, they need to be adaptable and able
to achieve complex dexterous manipulation. Enabling such
capabilities requires considerable innovation in hardware,
modeling and control [7].

One very promising approach is to design low-cost and
easy to fabricate robots which can be customized for specific
tasks. For example, King and his colleagues [8] present a
novel class of fully-compliant, tendon-actuated soft manip-
ulators made from off-the-shelf components. The primary
structure of this type of robot consists of a flexible foam
core. The softness and flexibility of the foam robot have
been shown to be of great advantage for secure grasping
and robust in-hand manipulation [8]. However, working with
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Fig. 1. Intuitive control strategies enable foam robot hands to perform
stable grasps and precision in-hand manipulation.

such a hand requires the application of new modeling and
control techniques.

The goal of this work is to provide users with tools and
strategies to create and control dexterous foam robot hands.
The primary contribution of this paper is an evaluation and
comparison of different control strategies for solving the
inverse kinematics problem of foam robots. To aid in both
design and control, we make use of a simulation framework
tuned and evaluated for our foam hands.

II. RELATED WORK

The continuously deformable nature of soft robots makes
controlling them a hard problem. Their ability to accomplish
motions such as buckling, contraction, extension or bending,
results in soft robots having virtually infinite degrees of
freedom. Additionally, Thuruthel et al. [9] mention non-
linear material effects such as compliance and hysteresis, as
well as the wide range of design and actuation techniques
that account for the non-trivial nature of this problem. Pre-
vious works have particularly studied the problem of inverse
kinematics (IK) which is concerned with finding a mapping
between actuation and desired configuration [10][11][12].
Existing control approaches can be classified into three main
categories: model-based controllers, model-free controllers
and a combination of both.

Model-based controllers rely on the establishment of a
kinematic model from which the actuation can be directly
inferred for the desired configuration. Saunders et al. [13]
model caterpillar-like soft robots as a series of extensi-
ble linkages. For tentacle-shaped soft robots, Marchese et
al. [14][15] and Chen et al. [16] use piecewise constant-
curvature models to model the robot. For soft robots with
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Fig. 2. Top) Input poses from user wearing a CyberGlove. Bottom) Output poses from the learned mapping. Left) Poses taken from the training set.
Right) Poses not included in the training set.

arbitrary shapes, Duriez [17] presents a real-time solution
using a finite element method (FEM).

Model-free approaches offer a wide variety of data driven
techniques to control soft robots. Neural networks have
successfully been used learn inverse kinematics on a cable-
driven soft tentacle manipulator with 2 degrees of freedom
[18]. Rolf et al. have proposed an exploration algorithm for
creating task space samples for IK learning [10].

Our approach is also model-free in the sense that we
collect data – either from the real robot or in simulation – and
use that data to build a map from desired pose to actuations.
The manipulators we want to control differ significantly from
previous designs for the following reasons:
• We allow users to place tendons anywhere on the

foam to achieve task specific actuation. This results
in complex actuation patterns and infinite amounts of
possible routings that need to be controlled.

• There are no restrictions in terms of possible foam
geometries. Grippers, anthropomorphic hands and even
multi-fingered non-anthropomorphic hands are possible.

• Coupled deformations occur throughout the hand due to
the extremely soft compliant nature of the foam core.

The contribution of our paper is to compare and contrast dif-
ferent possible solutions for mapping from pose to actuation,
with emphasis on intuitive direct control, data efficiency, ease
of learning models for new geometries or tendon layouts, and
ability to control the hand to perform practical manipulation
tasks.

III. FABRICATION OF SOFT FOAM HANDS

In order to be truly soft, our foam robots are built using
only soft materials such as foam casts, textile gloves, fibrous
tendons and flexible PTFE tubes for cable routing. We fit
a textile skin on a foam core hand model and sew tendons
through the skin. Servo motors drive the fingers of our hands
by contracting or slackening tendons. All rigid mechanical
components (motors and pulleys to drive the tendons) are
housed away from the hand.

To obtain the foam core for a robot hand we present a
fabrication process which either starts from a physical or a
digital hand model:
• Physical hand model: We fabricate a silicone mold of a

physical hand, from which we then cast a foam model
using a two-part urethane foam compound 1.

• Digital hand model: We create a digital 3d mesh of the
desired hand shape using CAD or 3d sculpting software.
From a 3d hand mesh we can either 3d print a positive
hand model and create a silicone mold, or directly 3d
print a negative model of the hand for use as a mold.

After the foam core is cast, we fit and laminate a textile glove
onto it and can sew tendons in arbitrary patterns through
the glove. The hand is glued to an acrylic base and we
route the tendons through PTFE tubing to minimize friction
and connect them to servo motors. Through our fabrication
process we can create anthropomorphic hands as well as non-
humanlike shapes, as for example planar grippers or three- or
four-fingered hands. Textile skins for non-anthropomorphic
shapes can be custom knit by automatic processes [19]. In [8]
we give a detailed description of the manufacturing process
and showcase the grippers and hands we built using this
technique.

IV. TELEMANIPULATION: LEARNING ON THE ROBOT

In the most basic scenario, we have only the robot itself,
with a given arrangement of tendons and motors, and a
device with which the user wishes to control the robot.
With this equipment, we must learn a mapping from user
gestures or poses to motor actuations that deform the robot
in the desired manner. We explore a straightforward map-
ping, where the user wears a CyberGlove and controls an
anthropomorphic hand that is similar to their own. However,
we wish to allow for flexibility when the geometries of the
human and robot hands may differ significantly.

We take inspiration from research on puppeteering in
computer graphics. For example, Seol and colleagues [20]

1Smooth-On FlexFoam-iT! Series
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present a method that allows the user to specify how they
wish to move in order to create certain character motions.
As an example, they might choose to swing their arm to
move an elephant’s trunk. In the case of [20], an approach
based on feature mapping is used to convert from user
motion to character control parameters. In our case, we use
linear regression to create a map from CyberGlove sensors
to tendon activations for the hand.

Our approach works as follows. First, a sampling of tendon
activations is used to execute various poses of the foam hand.
An operator imitates those poses while wearing the calibrated
CyberGlove, and the corresponding joint angles of the human
hand pose are recorded. Both random tendon activations and
tendon activations corresponding to finger-thumb oppositions
and grasping postures were used to build a training set of
120 hand poses. For generalization purposes, each pose was
recorded 5 times.

A regression model, which takes the 22 joint angles from
the CyberGlove as input and predicts the corresponding
tendon activation levels was trained. The model uses Kernel
Ridge Regression with a linear kernel. The average RMS
error achieved by the model between the measured and the
predicted normalized tendon actuations was 0.0026, with
normalized tendon actuation ranging from zero to one. A
normalized actuation value of zero refers to a loose tendon
and a value of one specifies the maximum actuation, which
was set individually for each tendon by qualitative observa-
tion.

Even with a small training set (120 recordings), the learned
model was able to reproduce a variety of poses with high
accuracy based on qualitative evaluation. Figure 2 shows a
comparison of poses supplied by an operator and the poses
realized by the foam hand. Both poses taken from the training
set and new poses are included.

We note that in order to achieve such results, the careful
selection of training poses is crucial. While our first approach
was to sample poses with only one finger contracted at
a time, we gained the insight that especially for coupled
motions such a model does not generalize well. In terms
of posing this means that fingertips of opposing fingers
do not touch or align for example. Adding specific poses
that include coupled tendon contractions, as shown in the
trained poses of Figure 2 can significantly increase general-
ization. Therefore we suggest to use poses that are related
to the task that needs to be executed. Using just three
additional task-specific poses (shown in Figure 2 on the left)
the learned mapping was also precise enough to perform
telemanipulation tasks, including grasping objects and in-
hand manipulations. Demonstrations are shown in Figure 3
(Left) and in the video attachment for this paper. Since
during the described sampling process we rely exclusively
on the person wearing the CyberGlove to match the robot
poses with their hand, this approach may be influenced by
subjective impression of how well poses match. A strong
advantage of this technique however is the possibility to
easily create mappings between the human hand and different
hand morphologies. Given that the human operator can create

Fig. 3. Left) Telemanipulation sequence of a small cuboid executed by
a human operator using the CyberGlove and the trained regression model.
Right) Open-loop controlled manipulation sequence created by interpolating
between tendon actuation keyframes.

a corresponding hand pose for each robot hand pose, this
technique can even be applied to non-anthropomorphic foam
hands.

V. DIRECT CONTROL: LEARNING IN SIMULATION

Learning on the robot is straightforward and was success-
ful. However, the amount of test data that can be collected is
limited and similarity in poses is only qualitative and depends
on the patience, care, and point of view of the user. If we
can learn a mapping from poses to actuations in simulation,
the comparison between test poses and learned poses can be
much more exact, and we can explore how additional data
may improve the results. However, for this approach to be
effective, the simulation must be a good match to the actual
robot hand.

In this section, we first describe our simulation environ-
ment, give results from a validation test of this environment,
and then compare several strategies for learning a mapping
from pose to actuation levels.

A. Simulation Framework

1) Finite Element Simulation: We are following the ap-
proach of Bern et al. [21] who use a finite element model
to capture the deformation behavior of soft plush toys. We
transfer their representation of soft plushies consisting of
a series of contractile elements (modeled as stiff unilateral
springs) to our foam hands. Each foam hand is modeled as
a discrete set of nodes denoted as X for the undeformed
robot and x as the statically stable deformed pose. The total
deformation energy of the system is defined as:

E = E f oam +Econtractile +Epins
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Fig. 4. Following the approach of Bern et al. [22], we use finite
element simulation for our soft robots, where tendon contractions result
in contraction of the mesh along the tendon routing. Equilibrium poses
before and after contraction are shown. We build on this previous research
by identifying and evaluating simulation parameters to match foam hands
manufactured using our process and by providing an intuitive user interface
for interactive tendon design.

where E f oam is the energy due to deformations of the
simulation mesh, Econtractile is the strain energy stored by the
contractile elements, and Epins models the behavior of stiff
springs that connect a small number of simulation nodes to
world anchors in order to eliminate rigid body modes. The
elastic behavior of the foam is modeled using linear finite
elements with a compressible Neo-Hookean material model.
Tendons are modeled as contractile elements that abstract
the contraction of a tendon as changing the rest length of
the underlying unilateral spring model. A contractile element
is defined as a piecewise linear curve with two endpoints
(xs,xt ) and n intermediate vertices (x1, . . . ,xn). We assume
that all points of contractile elements are bound to nodes of
the simulation mesh. The initial rest length l0 of a tendon is
defined by the sum of distances between the vertices as

l0 = ||xs− x1||+
n−1

∑
i=1
||xi− xi+1||+ ||xn− xt ||

The contraction level αc of each tendon describes the con-
tracted length as

lc = l0 · (1−αc)

In the following, the word routing refers to the choice of end-
points and intermediate vertices of each tendon. The resulting
deformation for a tendon routing with the contractions αc is
calculated by minimizing the total energy of the system using
Newton’s method. A detailed description of this step and
the calculation of deformation energy can be found in [21].
Figure 4 shows a four-fingered hand mesh in equilibrium
before and after contracting a tendon.

We tuned simulation parameters through observed visual
feedback to match qualitative behavior of the foam hands in
simulation with the behavior of physical hands. The obtained
values of the material parameters are shown in Table I and
are validated with motion capture data in Section V-B.

We created a user interface to enable users to interactively
and intuitively create new tendon patterns and evaluate the
posing and motion capabilities of their design quickly. Our
interface contains the following features:

Fig. 5. Four-fingered hand with Vicon markers.

• users can pick nodes and drag the mesh into desired
configurations to create target poses and explore the
general workspace of a hand geometry

• quickly pick a set of nodes along which tendons are
routed

• add, alter and remove tendons from the design
• create hand motions by contracting tendons, record and

play back the created motion sequences

B. Validation of simulation model

In this section we quantify the accuracy of our simulation
framework by comparing fingertip trajectories of a simulated
and a physical foam hand robot. The deformations of the
foam are tracked using a Vicon Motion Capture system.
Predicted deformations from simulation, are then compared
with the corresponding actual deformations on the physical
robot.

1) Four-Fingered Foam Hand: The physical foam hand
robot used in this experiment is a non-anthropomorphic hand
with four fingers and 10 tendons. Each finger is controlled
by a pair of antagonistically routed tendons acting as flexor
and extensor. In order to introduce abduction and adduction
motions, we placed two additional tendons on the left and
right side of one finger. As reference in simulation we use
the same geometry, with a slightly coarser mesh (980 nodes)
compared to the mesh that was used to print the mold of
the physical foam hand. This mesh size was chosen to allow
interactive simulation in our user interface.

2) Motion Capture Experiment: We record fingertip tra-
jectories of our four-fingered foam hand using a Vicon
motion capture system with 12 cameras. To get a robust
estimate of the position and to prevent occlusions we place
four markers around each fingertip as shown in Figure 5.
For registration purposes we additionally place markers on
the platform on which the hand is mounted and alongside
each finger. After the experiment the recorded markers are
registered on the 3d mesh. This is done using a standard
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ICP algorithm that minimizes the distance of points from the
mesh and the markers with respect to each other. Since the
markers themselves are not exactly aligned with the surface
of the foam we found it difficult to infer the exact position of
the fingertip using only the position of the markers. Therefore
we define each fingertip position ~p j with j = {1, . . . ,4} as
the mean of the corresponding markers k with k = {1, . . . ,4},
with a distal offset of 5mm normal to the plane spanned by
the four markers:~p j =

1
4 ·∑

4
k=1 ~p jk+0.005 ·~n j. The RMS error

describing the euclidean distance between the aligned point
clouds of our ICP registration was 4.05mm.

In terms of material parameters for the FEM simulation
(mass density ρ , Young’s modulus E, Poisson’s ratio ν) we
used the values found in Table I. The goal of this experiment

TABLE I
MATERIAL PROPERTIES USED IN FEM SIMULATION

ρ [kg/m3] E [Pa] ν

160 3e6 0.25

is to give an estimate of how well our simulation can match
reality. We ran 5 trials in which each tendon is repeatedly
contracted from 0% to 50% of its rest length in steps of
10%. The tendon rest length is distinct for each tendon and
is computed in simulation.

3) Results and Discussion: A motion sequence of a con-
tracting extensor tendon moving the simulated hand through
the waypoints at 10%, 30%, and 50% contraction is shown in
Figure 7. The motion is displayed from three different cam-
era views. The fingertip trajectories recorded by the Vicon
system are marked as dotted lines, with larger green points
at the fingertip positions recorded at the tendon contraction
waypoints (10%, 30%, 50%). In each frame, fingertips of the
simulated hand are marked as red circles. From this sequence
and the video attachment it can be observed that trajectories
of the simulated and physical fingertips largely coincide.
The resulting error between fingertip positions captured
with the Vicon system and from simulation is depicted in
Figure 6. The mean position error for all fingers including
all activation levels is 0.626cm. For each individual finger
median error and the quartile deviations converge to similar
values at all contraction levels. This suggests that even large
deformations do not significantly decrease the accuracy of
our model. Larger initial position errors as observed in finger
1 (Figure 6) can be explained by external disturbances. In
general we identify the following sources of position errors:
• small deviations between tendon routings in simulation

and reality
• tendon slack
• registration errors in motion capture system
• friction between tendon and glove
• slight relative movements of foam core and glove during

actuation
Most of these errors can be mitigated during fabrication of
the hand, for example by using teflon-coated tendons or
different gluing techniques. The results of this evaluation

Fig. 6. Position Error between simulated and captured fingertip positions
of finger 1-4 at respective contraction level.

Fig. 7. Simulated hand and motion capture trajectories for an extensor
tendon moving from 10%(top) to 50%(bottom) tendon contraction, viewed
from three different camera perspectives. Fingertip positions recorded by
the Vicon system at each contraction level are averaged over all five trials
and marked as large green dots, fingertip positions of the simulation model
are marked as red dots.

suggest that our model predicts foam deformations suffi-
ciently well to proceed with simulation based learning of
mapping from desired pose to tendon actuation.

C. Learning in Simulation

Collecting data in simulation is faster and easier than
collecting data on the physical robot. Making use of the
accessibility of large amount of data from the simulation, we
are able to apply learning-based methods with complex mod-
els. These methods take the concatenated fingertip positions
as the input and output the tendon activation that is expected
to pose the hand correspondingly. Four different methods are
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applied and compared: 1)Nearest neighbor, 2)Linear ridge
regression, 3)Neural network using supervised learning, and
4)Deep reinforcement learning.

1) Learning-based methods: The Nearest neighbor
method serves as a straw-man approach. It takes the tendon
activation of the pose that is nearest to the desired pose in the
pose space based on Euclidean distance and simply returns
that tendon activation as the result.

Linear ridge regression is supplied in part because it
was used for learning for telemanipulation as described
in Section IV. It is perhaps the second simplest sensible
approach beyond Nearest Neighbor. We use a linear model
with an additional L2 ridge regularizer.

A neural network using supervised learning adds ad-
ditional degrees of freedom and nonlinearity. We include
this model to determine whether the additional complexity
can improve fit to the data. Our Neural Network model is
constructed with four intermediate layers, each of which has
30 units and ReLU non-linear activations. The activation
of the output layer is tanh(x) to match a linear-normalized
range [-1,1] of the output activation. The training process
runs 300 epochs with a batch size of 20, a learning rate of
0.001 and Adam optimizer with the typical parameter values
(α = 0.001, β1 = 0.9, β2 = 0.999, ε = 1×10−8).

Deep reinforcement learning can be considered as an
alternative approach to learning a nonlinear model. Based
on the success of learning IK on both rigid robot arms
and hands [23], deep reinforcement learning is expected
to transfer to soft robots. In particular, we apply the deep
deterministic policy gradient [24] algorithm combined with
hindsight experience replay [25]. The shaped reward function
is the negative of the average distance error over all fingers.
Hindsight experience replay can be considered as a way
to include additional targeted results, as ”failed” solutions
are reinterpreted during learning as successful solutions to a
different problem.

2) Experiments: A simulation model of the physical
anthropomorphic foam hand shown in Figure 8 (Left) is
obtained by using Autodesk ReMake[26] to generate a surface
mesh from approximately 50 images of the hand taken with
a smartphone. We then run TetGen[27] to build a 3D finite
element mesh of the hand, shown in Figure 8 (Right).

To compare the sample efficiency of all four methods,
we use the same datasets for both training and testing.
The training dataset collects 100,000 poses while the testing
dataset contains 100 poses, all of which are pre-generated in
the simulation by drawing randomly from possible tendon
activations.

3) Results and Discussion: We plot the performance
(average distance error in centimeters) with respect to the
amount of data used in training. The comparison plot is
shown in Figure 9. When training with less than 100,000
samples, the training data is extracted in sequence from
the large 100,000 dataset. The plot shows that linear ridge
regression is outperformed by all other approaches especially
for large datasets, implying that additional model complexity
is useful for this test dataset. Overall, and to our surprise, the

Fig. 8. Anthropomorphic foam hand prototype in its rest pose. Left)
physical foam hand prototype, Middle) Scan of the prototype, Right) Finite
element mesh used in simulation.

Fig. 9. Performance of four different methods to learn IK in simulation.

nearest neighbor method shows the best performance and the
best sample efficiency. However, results from nearest neigh-
bor approaches are typically not smooth for datasets that do
not comprehensively cover the space of tendon actuations.
Lastly, deep reinforcement learning outperforms supervised
learning. The main difference between these two approaches
is the existence of a loss function. While in supervised learn-
ing, the network is trained to fit the tendon activations from
the training data, the objective in reinforcement learning is to
maximize rewards based on the calculated average distance
error, which may be physically more reasonable. Another
possible cause is that the reinforcement learning algorithm,
DDPG, has an actor-critic mechanism which might help the
learning.

VI. DISCUSSION

Linear regression was sensible for learning on the real
robot due to the extremely small amount of data available. It
is a simple and straightforward model, and performed well in
practice, both for poses that were not part of the training set
and when teleoperating real-world grasping and manipulation
tasks.

When we moved to the simulation environment, we found
that more complex models – and even nearest neighbor –
appeared to outperform linear regression. We experimented
extensively in simulation with direct control using super-
vised learning, and we found that it behaved smoothly and
intuitively in most cases. We believe, however, that linear
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regression can still work well in the simulation environment,
but that test poses should be selected carefully to cover
typical use cases (as was done in the real-robot learning).

Simulation brings advantages of being able to iterate and
test in a rapid manner. Based on our validation experiments,
we are confident in being able to test tendon routings and
iterate on different hand geometries and tendon designs
in rapid fashion. Our attached video shows examples of
utilizing our simulation system in this manner.

VII. CONCLUSIONS

In this work we presented various control approaches for
foam robots and compared them in terms of their perfor-
mance in simulation. To control the physical foam robot
we developed a new approach using a CyberGlove and a
regression model. To support the design of soft foam robots
we created and evaluated a new simulation framework which
significantly increases the intuitive design of tendon routings
on foam hands. The contributions we made will enable others
to quickly design task-specific foam hands that can perform
dexterous manipulation tasks.

In our future work we want to focus on optimizing and
automating the design of foam hands. Also, we would like to
move towards robust autonomous control strategies because
we believe that these hands have demonstrated the potential
to perform complex dexterous manipulation robustly and
with ease.
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