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Abstract— We propose a deep learning based method for
fast and responsive human-robot handovers that generate robot
motion according to human motion observations. Our method
learns an offline human-robot interaction model through a Re-
current Neural Network with Long Short-Term Memory units
(LSTM-RNN). The robot uses the learned network to respond
appropriately to novel online human motions. Our method
is tested both on pre-recorded data and real-world human-
robot handover experiments. Our method achieves robot motion
accuracies that outperform the baseline. In addition, our
method demonstrates a strong ability to adapt to changes in
velocity of human motions.

I. INTRODUCTION

In human-robot collaboration (HRC), robots must have
the ability to physically interact with humans safely and
synergistically. Specific collaborative patterns provide a com-
mon language by which both humans and robots interact
and mutually aid each other efficiently. Pre-programming
continues to be the main medium by which robots are taught;
however, teaching appropriate collaborative patterns for dif-
ferent tasks this way is tedious, especially for complex tasks.
For this reason, we propose an interactive learning: a data-
driven approach based on imitation learning that involves the
human-robot pair to accomplish a smooth handover [1].

Much work has been done in generating appropriate
robot motions in response to observed human motions. In
[2], Maeda et al. first considered a joint distribution of
human and robot movement primitives over an entire set
of trajectories. Then, the robot conditioned on a partial
human observation of the joint distribution to select the
most likely trajectory pattern. The latter in turn was used
to regress a corresponding robot manipulator trajectory. This
system was further integrated with Electromyography (EMG)
signals in [3] to improve the robot’s ability to recognize
motions that looked similar but handled different objects.
These works, however, did not update their observations
in real-time and thus generated robotic trajectories that are
rigid and inaccurate. That is, they lack the ability to be
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Fig. 1. Our system generates robot motion based on observed human
motions. We input a human motion sequence that is processed by an LSTM
layer and a fully-connected layer. Finally a robot motion sequence is output.

responsive to changes in the human’s actual motion as well
as they suffer from poor predictive accuracy as their reach
location tends to be distant from a human’s actual goal
position. Another challenge in HRC is that human motions
may occur at different speeds, leading to different time scales
for different trajectories and making it difficult for the robot
to respond appropriately. To resolve such temporal scaling
issues, previous works estimated the trajectory phase through
probabilistic models [2], [3] or dynamic time warping [4].
However, the estimated phase or alignment may not be
accurate resulting in error propagation during the trajectory
generation step. Recently, learning-based approaches like
Recurrent Neural Networks (RNNs) have been widely used
in robotics to learn how robots should move to accomplish
a task. This includes goal-directed tasks [5], manipulation
tasks [6], and physical interactions between a humanoid and
other physical robots [7]. These works demonstrated that
RNN models with multiple time scales are able to generate
robot motion successfully for complex tasks. Recently, Ochi
et al. use a Recurrent Neural Network with Long Short-
Term Memory units (LSTM-RNN) to generate online robot
scooping motions in a changing environment [8].

This paper contributes an LSTM-RNN model in human-
robot collaboration scenarios to generate appropriate robot
motions in response to observed human actions. In particular,
we first learn an LSTM-RNN model from interactive training
patterns of human and robot handover demonstrations. At
runtime, the LSTM-RNN acts as an online robot controller,
which inputs human motion observations from the wrist and
the elbow and then outputs reactive robot trajectories. We
compare the learned LSTM-RNN model’s performance with
a baseline method based on the probabilistic motion prim-
itives [3] on both the pre-recorded data and the real-world
human-robot handover experiments. Results demonstrate that
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our method outperforms the baseline approach in terms of the
position accuracies achieved by the generated robot motion.
In addition, our method enables robot adaptive behaviors to
changes in velocity of human motions. Our approach further
improves the efficiency and synergy of HRC by helping
robots achieve fast and responsive motion generation that
is robust to a wide variety of time scales.

Section II presents the novel robotic motion generation
approach using LSTM-RNNs. Section III, Section IV and
Section V present the experiments as well as comparisons
with our baseline [3]. Finally, we highlight key findings in
Section VI.

II. APPROACH

A. Introduction to LSTM-RNN

RNN is the feed-backward version of the conventional
feed-forward neural network. It allows the output of one
neuron at time step ti to be the input of the same neuron at
time step ti+1. Standard RNN methods suffer from the van-
ishing gradient problem [9]. To overcome this problem, [10]
developed the LSTM unit. LSTM units are fit to store and
access information over long periods of time. LSTMs achieve
this through their 3-gate architecture, which consists of an
input, an output, and a forget gate. Furthermore, RNNs with
LSTM units have been effective in sequence learning while
also being scalable. In this work, we leverage the strengths of
RNN-LSTMs to model correlations in human-robot motions
that then serve to generate accurate and responsive robot
motions in response to human observations.

B. Network architecture

We now introduce the architecture and the training process
of our neural network. The network, which is shown in
Figure 2, is composed of two layers. The first layer takes
an input sequence of length nx. The sequence enters into
each of the n LSTM units contained in the LSTM layer.
The LSTM layer outputs then enters a fully-connected layer
to align the dimensionality of the output. The range of n
is decided by the complexity of the dataset and the specific
values set empirically (see Section III for details). During
training, we use the Adam optimizer [11] and set the loss
function as the the mean square error as defined below:

L(Y, f(X)) = L(Y, Ỹ ) =
[

1
P

∑P
i=1(Yi − Ỹi)

2
] 1

2

, (1)

where P is the feature dimensionality, X is the input se-
quence, Y is the output ground truth, and Ỹ is the generated
sequence.

C. Data collection

For experimentation, a Baxter humanoid robot uses its left
arm to collaborate with humans. The robot is equipped with
a standard Baxter electric pinching gripper and one ASUS
Xtion RGB-D camera for sensing. The RGB-D camera is
mounted at the base of the robot to observe human motions.
The Openni tracker ROS package is used to identify human
joint positions. ROS Kinetic in Ubuntu 16.04 is run on
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Fig. 2. The architecture of our robot motion generation network. θt is
the sample of a human sequence at time step t and n is the number of
hidden LSTM cells. The output of each LSTM unit is connected to a fully-
connected layer to align the output. The robot motion sequence is the output
of this fully-connected layer.

TABLE I
COLLECTED FEATURES FROM DEMONSTRATIONS.

Features Human Robot

Input features (6 dimensions) Palm position NoneElbow position

Output features (7 dimensions) None Joint angles

several computers to control all aspects of the experiment.
As for the human collaborator, two human participants assist
with data collection under two roles: (i) a robot collaborator,
and (ii) a human teacher. Figure 3(a) show how a human
collaborator performs the interactive task with Baxter. The
human teacher uses kinesthetic guidance to teach appropriate
collaborative motions. Human and robot movements are
recorded at 50Hz and are parsed into a multi-dimensional
feature vector described in Table I. These features are then
used as the input-output pairs to train a LSTM-RNN. During
training, the fixed length human motion segments along with
the corresponding robot trajectory segments are used to train
the network. In this way, during testing, the robotic joint
angles are generated to achieve appropriate collaborations.

D. Data pre-processing

For the purpose of training the network, it is necessary to
scale the input-output data such that the ordered pairs share
the same data range. In our experiment, both human arm
positions and robot joint configurations are scaled to lie in
the interval [0, 1].

Additionally, we filter the normalized data through a
Gaussian filter g(x) = 1√

2πσ
· e−

x2

2σ2 with σ = 0.2 to reduce
the impact of noise. Furthermore, to improve the robot’s
ability to respond to motions of different time scales, features
are linearly interpolated as a function of speed values. In
particular, we study five different temporal scales, with 0.5×,
0.75×, 1.0×, 1.25× and 1.5× speeds, respectively. To test
the network’s ability to adapt to the time scales, the testing
trajectories were interpolated to six different temporal scales;
namely: 0.4×, 0.6×, 0.8×, 1.0×, 1.2×, 1.4× and 1.6×,
respectively.

For each collaborative task, the number of demonstrations
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is limited, which is not enough for training the LSTM-RNN.
Thus the features of an entire task are separated into several
sub-sequences, in order to increase the amount of training
data and to help reduce the overfitting. We denote the features
of the input and the output trajectories as FHx and FRy , the
time steps of the input and the output as nx, ny , the total
number of time steps in a demonstration as T , and the index
of a time step as t. The sub-sequences can then be generated
as follows:

x =
{
Fx (t, ..., t+ nx − 1)

}
,

y =
{
Fy(t, ..., t+ ny − 1)

}
,

(2)

where t = 0, 1, 2, ..., T − nx + 1. In this way, one demon-
stration can be separated to T − nx + 1 sequences.

III. SIMULATED EXPERIMENTS AND RESULTS

A. Experimental setup

In Section II-C, we described the human-robot movement
data collection process. In our experiments, we recorded
three handover tasks that have movements ending in different
positions. Each task has 30 pairs of human and robot
trajectories—a total of 90 trajectory pairs—as shown in
Figure 3. To train the network, we randomly selected 70%
of the recorded dataset for training, 10% for validation
(training and validation sets are pre-processed as described
in Section II-D), and 20% for testing.

B. Selection of network parameters and sequence length

Since our data is relatively low dimensional and the dataset
size is small, we empirically select a set of appropriate
network parameters to avoid overfitting. Specifically, the
number of LSTM units n is set to 50 and the validation
result shows that the LSTM-RNN converged at around 10K
iterations without overfitting. These parameters are then used
in later experiments. To provide a fast response to the human
motion, the robot should not stop to observe the human for
a long time. This implies that the robot should only consider
a brief sequence of human observations. As a result, we
empirically selected the observation duration to be about 5-
10% of the trajectory length for the input sequence. The
average length of our demonstrations is around 130 time
steps; so we test three different (nx, ny) setups: 10-5, 5-5,
and 10-10 as the input-output sequence lengths of the LSTM-
RNN.

Figure 4 shows the average mean squared error of the
generated joint states with different choices of (nx, ny).
From the figure, it can be observed that there is no obvious
difference between these choices in terms of the generation
error. We choose the input and output sequences to be the
equal length to avoid the trouble of sequence alignments at
the start and the end of the trajectory. In addition, to resolve
the observation missing in the real-world experiment due to
hardware limitations, we choose longer sequences to improve
the robustness toward the missing data. Based on above
considerations, the lengths of the input-output sequences are
set to nx = ny = 10 and the time step duration in all the
experiments is set to 20ms.

C. Performance on pre-recorded data

In this section, we compare the generated robot motion
using our methods and a baseline method, respectively. In
order to test the trajectory generator’s adaptivity to different
time scales, we use two types of training sets: one is the set
with only original trajectories; and the other has trajectories
with five different time scales (as described in Section II-
D). For convenience, we call the LSTM-RNN model learned
from the first training set as the 1-speed model, and the
LSTM-RNN model learned from the second training set as
the 5-speed model. The baseline method is a probabilistic
motion primitive based model for early motion prediction
and generation [2]. Our method generates the full trajectory
only after 100% observation, because it works in a batch-
based manner.A s a result, we also set the baseline method
at 100% observation for a fair comparison.

In order to achieve a smooth robotic motion, linear re-
gression is used to post-process the output sequence. In
addition, to evaluate the motion quality in a given task, we
need to compose output sequences into a trajectory. If the
generator works efficiently, there is overlap across different
sequences, and such overlap is averaged as waypoint values
in the trajectory. Figure 5 shows an example of the generated
trajectories in joint space by the 1-speed model, and the end-
effector position calculated from the generated robot joint
configurations.

We first evaluate the performance of our system by cal-
culating the error of the generated robot trajectories in the
test set. The error between two trajectories is calculated as
follows:

err(γ, γ̃) =
1

T

T∑
t=1

[∑P
i=1(γi(t)− γ̃i(t))

2
] 1

2

, (3)

where γ and γ̃ represents the ground truth and generated
robot trajectory respectively, so γ(t) is a waypoint at time
step t of the trajectory. P is the dimension of the waypoint
and T is the length of the trajectory. Because different
trajectories have different length, all trajectories are re-
sampled to T = 100.

Figure 6 shows the average trajectory errors generated by
our method and by the baseline method. The average joint
configuration space error for the 5-speed model, 1-speed
model, and baseline methods are 0.17 ± 0.06, 0.17 ± 0.05,
and 0.36±0.25 radians respectively. The average end-effector
error for these three methods are 5.9 ± 2.4, 5.7 ± 2.4, and
10.4 ± 5.3 cm respectively. These results demonstrate that
both LSTM-RNN models outperform the baseline in all three
tasks. In addition, our methods shows a smaller variance,
which implies that our system works more stably. It is also
interesting to see that both the 1-speed and 5-speed models
are robust to different time scales in the human motion, since
the test set has data with six different time scales. Therefore,
the result implies that even when the training dataset did not
contain data with a wide variety of timescales, the LSTM-
RNN model still adapted to speed variations.

Additionally, given that we want the robot to learn to have
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(a) Collect data (b) Handover task 1 (c) Handover task 2 (d) Handover task 3

Fig. 3. (a): The data collection procedure. Two human participants are working on the data collection. They are playing different roles in the experiment:
the one to the left is the robot collaborator interacting with the robot, and the one to the right is the teacher who is teaching the robot to generate appropriate
response to the human collaborator. (b, c, d): Collected human-robot trajectories for three different collaborative tasks in Cartesian space. We plot the x-y-z
position of the human hand (red line) and the robot end-effector (blue line) to provide an intuitive illustration of the human and robot movements. From
left to right, we label the tasks as Task 1, Task 2, and Task 3.
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Fig. 4. The average trajectory error of joint angles from the three
experimental handovers.

appropriate responses to human motion rather than reactively
servoing to a target region, the quality of each part of the
trajectory is also important. Figure 7 shows the average
error along the trajectory. From the results, we can observe
that both of our LSTM-RNN methods have a smaller error
than the baseline in most part of the trajectory, especially
in the middle of the motion. Though trajectories generated
by the baseline method are slightly better at the end point,
their error in the middle can be as large as 20 cm. This
comparison of handover errors indicates that our methods
learn the collaborative pattern along the entire task better
than the baseline method. And the higher accuracy in the
middle part of the handover shows that our methods are more
robust in generating reactive motions.

IV. REAL WORLD COLLABORATION EXPERIMENTS

TABLE II
DISTANCE BETWEEN THE ROBOT END-EFFECTOR AND THE HUMAN

HAND AT THE HUMAN PREFERRED HANDOVER POSITION (CM).

Model
name

Task 1 Task 2 Task 3 Average

5-speed
model

5.08±1.84 7.82±1.27 22.05±0.55 11.65±7.56

1-speed
model

3.77±1.36 5.56±0.41 9.54± 0.76 6.29± 2.58

baseline [3] 6.95±0.70 5.83±2.52 10.16±2.83 7.65± 2.88

As a more comprehensive evaluation, the LSTM-RNN
models trained in the simulated experiment are then tested
in a real human-robot collaborative experiment. In this
experiment, a human subject is asked to perform the 3
tasks illustrated in Section III-A and Figure 3. Each task
is repeated 10 times to evaluate the performance.

Given that the system continuously updates the robot
motion online, the system must be sufficiently fast to capture
human motion and then generate the robot motion. Our
experiment learned that the time required to generate the
motion sequence is around 10ms to 15ms with the graphics
card of model Nvidia GTX 970M , and thus our system can
work at 50Hz. To evaluate the model’s ability to complete
the tasks, we compute the distance between the human
hand and the robot end-effector at the human’s preference
handover point. In addition, because the human has the
ability to adapt to the robot’s motion, the success rates of
three tasks are also recorded to evaluate the robot’s ability
to accomplish the task.

Table II shows the distance between the human hand and
the center of the robot end-effector. All the models obtained
a better result in tasks 1 and 2, and a worse result in task 3.
In particular, the 1-speed model outperformed other models
in all tasks. It is interesting that the 5-speed model obtained
poor results in task 3. The latter indicates that there might
be over-fitting in the model. In the success-rate experiment,
we count a task as a success if the human successfully grabs
the object handed over by the robot at the human’s preferred
point. In the baseline method, the model does not update the
robot motion after the first motion generation, so the human
can move to the location where the robot stops to grab the
object. In our method, the robot continues responding to the
human motion so the human can adjust his motion to make
the handover possible. For the three tasks, the 5-speed model
has the success rates of 90%, 100%, and 0% respectively;
while the 1-speed model’s success rate is 100%, 100% and
60% respectively. The 0% success rate of task 3 in the 5-
speed model occurs because the robot moved to locations
very far away from the human. However, the handover finally
succeeds at the handover position in task 1 or 2 after the
human adjusts his motion. Other failure modes are due to
the robot slightly crashing into the human arm, at which
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Fig. 5. Left: examples of the generated robot trajectories and the pre-recorded ground truth in the joint space, where e0, e1, s0, s1, w0, w1 and w2

are the seven joints of the robot. Right: examples of human trajectories, and the robot end-effector position calculated from generated robot joints and the
ground truth.
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Fig. 6. The average error of the generated trajectory in the joint space (left) and in the Cartesian space (right), for three tasks implemented by three
approaches. It shows that both of our LSTM-RNN models outperform the baseline method in all three tasks. In addition, our methods provides a smaller
variance.
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Fig. 7. The error along the generated trajectory, both in the joint space (left) and in the Cartesian space (right). It shows that our LSTM-RNN models
have smaller errors along the whole trajectory in the joint space, and most of the configuration space. All methods have a small position error with the
value about 5 cm at the end of the trajectory.

TABLE III
THE AVERAGE ERROR OF EACH JOINT ANGLE BY 3 METHODS.

Joint name (radians*10−2) e0 e1 s0 s1 w0 w1 w2

5-speed method 1.5± 1.1 8.6± 5.8 7.0± 3.7 9.2± 4.6 5.0± 1.3 12± 5.4 12± 4.6
1-speed method 1.5± 1.1 8.2± 5.8 7.4± 3.9 9.3± 4.9 5.0± 1.3 12± 5.5 12± 4.6

Baseline [3] 5.0± 4.6 21± 20 14± 15 20± 21 6.7± 3.8 23± 32 24± 31
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point the human draw his hand back to avoid the collision.
Figure 8 illustrates two examples of the real motion

sequences, where the robot keeps responding to the human’s
motion while the latter is moving. In the second sequence,
the human observes that the robot may not reach his initial
expected area, so she adjusts her motion to adapt to the robot.

time

Fig. 8. Two examples of cooperative tasks sequences. The robot responses
to the human motion while the human is moving. In the second sequence,
the human also observes the robot motion, and then adjusts her motion to
adapt to the robot.

V. DISCUSSION

From all the experiments, results show that our models
generate trajectories which are more in line with human’s
preferences. Especially, the 1-speed model shows good re-
sponsiveness to human motion even if the motion has mul-
tiple temporal scales. Besides, we observe that our models
perform task 1 and 2 much better than task 3. To find out the
reason of this kind of difference, we inspect the following
factors. It is found that in the training set the robot motion
of task 1 and task 2 are both at the left side of the robot,
and the task 3 starts at the left side and ends at the right of
the robot. In addition, when the robot moves to the middle
area, it always blocks the camera and the position of human
hand is not accurate. Therefore, the robot does not learn how
to go right very well due to the lack of data. These above
factors cause the performance difference among tasks.

Considering that the robot motion consists of the motions
of its seven joints, we further calculate the average error
between the generated joint angles and the pre-recorded data,
and analyze the average error of each joint separately to
investigate whether there is any joint better or worse than
others. As shown in Table III, s0 and s1 represent the two
shoulder joints of the left arm of the humanoid robot; e0
and e1 are two elbow joints; w0, w1 and w2 represent three
wrist joints. From the table, we can observe that w1 and
w2 have the largest errors. Some reasons about these largest
errors are as follows. Firstly, the wrist joints have more
relevance to the orientation of the end-effector. Secondly,
the robot end-effector orientation depends to human hand’s
orientation which has not been recorded, and so our models
does not learn how to move the wrists well without training
data. In addition, though the error of shoulder joints is
smaller, a slight difference of shoulder joints may cause a

big difference of the end-effector position. Therefore, we
could further explore to set different weights to different joint
angles during training in the future work.

VI. CONCLUSION

This paper proposes an LSTM-RNN based method to
generate a robotic motion from the observations of the
human movements for achieving fast and responsive human-
robot collaborative tasks, including the human-robot han-
dover. The robot learns the collaboration behavior directly
from demonstrations without pre-programming, and shows
a strong ability to adapt to movements with multiple time
scales, which are common for human motions. In addition,
the LSTM-RNN model is able to directly generate the motion
in the joint space, and thus avoids the trouble of solving an
inverse kinematics or motion planning problem.

Our paper demonstrates the possibility to apply deep
learning approaches on HRC problems. However, currently
we need to train separate models for different tasks and
cannot switch smoothly between tasks. In particular, some
collaborative tasks can be similar in the human’s motion
but can be very different in robot’s movements. Thus for
future work, we hope to combine the task recognition and
the motion generation in our deep learning framework.
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