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Abstract— The prohibitively amount of data required when
learning complex nonlinear policies, such as deep neural
networks, has been significantly reduced with guided policy
search (GPS) algorithms. However, while learning the control
policy, the robot might fail and therefore generate unaccept-
able guiding samples. Failures may arise, for example, as a
consequence of modeling or environmental uncertainties, and
thus unsuccessful interactions should be explicitly considered
while learning a complex policy. Currently, GPS methods
update the robot policy discarding or giving low probability
to unsuccessful trials. In other words, these methods overlook
the existence of poorly performing executions, and therefore
tend to underestimate the information of these interactions
in next iterations. In this paper we propose to learn deep
neural network controllers with an extension of GPS that
considers trajectories optimized with dualist constraints. These
constraints are aimed at assisting the policy learning so that the
trajectory distributions updated at each iteration are similar
to good trajectory distributions (e.g., sucessful executions)
while differing from bad trajectory distributions (e.g. failures).
We show that neural network policies guided by trajectories
optimized with our method reduce the failures during the policy
exploration phase, and therefore encourage safer interactions.
This may have a relevant impact in tasks that involve physical
contact with the environment or human partners.

I. INTRODUCTION

The complexity and variety of tasks that a humanoid
robot may face in real scenarios, where environments are
usually dynamic and unstructured, require a high degree
of autonomy. For this reason, the idea to autonomously
discover optimal behaviors from experience has motivated
the research community to make reinforcement learning
(RL) feasible in high-dimensional, continuous or partially-
observed spaces. In this context, the application of RL
in robotics has been aimed at reducing the complexity of
these problems by exploiting policy search (PS) methods
with domain-appropriate pre-structured policies, which has
provided faster learning in simple scenarios [1]. Specify-
ing the policy through general-purpose representations such
as neural networks (NN) has demonstrated to successfully
model complex behaviors and to work directly with raw
sensory data in end-to-end frameworks [2][3]. Nevertheless,
the application of these complex policies in robotics is
still limited because the majority of PS methods either do
not scale well with high-dimensional policies or require a
prohibitively amount of interaction with the environment. On
the other hand, guided policy search (GPS) algorithms are
data-efficient methods for learning NN policies because they
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transform the policy search problem into supervised learning,
where the training data is generated by a computational
teacher that produces data that is best suited for training
the final policy. Simple trajectory-centric RL algorithms [4]
or complex trajectory optimization methods [5] showed the
benefit of such guiding policies.

As with any other RL agent, the experiences that a
robot obtains while learning a task are not always good or
successful. For example, an aggressive exploration, a flawed
definition of the robot/environment state, the existence of
limited useful data or the stochasticity of the environment
may lead the robot to fail and therefore generate bad or
undesirable rollouts. Nonetheless, most of the policy up-
date strategies in RL do not completely take advantage of
this information and are limited to increase the probability
of occurrence of high reward samples and give only low
probability to the failures, which makes the robot forget the
unsuccessful executions in subsequent iterations [1][6].

This problem can be even more critical in GPS, because
the guiding policies seek to minimize an expected surrogate
cost that includes not only the task-related cost, but also a
term that encourages the guiding policies to resemble the
complex global policy. The latter term may lead the guiding
policies to produce undesired events that generate a sudden
increment in the cost values, which we necessarily want to
avoid in the following iterations. Our desire to avoid these
failures can, to a certain extent, be captured by a well-
designed cost function. However, as in the case of mirror
descent guided policy search (MDGPS) [7], the change of
the guiding policies is limited by a Kullback-Leibler (KL)
divergence constraint, and therefore samples generated by
these updated policies may produce the same undesired fail-
ures of previous iterations. Additionally, the supervision step
in GPS uses all the trajectory samples that were generated
by the guiding policies, therefore fitting the global policy to
trajectories that, in fact, we are trying to avoid. Consequently,
next guiding policies will be constrained to be similar to a
global policy that was trained with flawed samples.

In this paper we propose a model-based trajectory-centric
RL algorithm that explicitly exploits good and bad experi-
ences in the policy optimization step. First, good and bad tra-
jectory distributions are defined and updated by samples with
low and high cost, respectively. Then, similarly to [8], these
trajectories are explicitly considered in the policy update by
including upper bounds on the KL divergences between the
distributions of new and good trajectories, and lower bounds
on the KL divergences between new and bad trajectory dis-
tributions. The trajectory distributions optimized with these
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dualist constraints can be used in GPS to guide the learning
process of a complex policy representation, therefore leading
to global policies that encourage safer interactions.

Related work and background are given in Sec. II and
III, respectively. The details of the proposed RL algorithm
are presented in Section IV-A and the extension of MDGPS
that considers samples generated by our dualist-optimized
trajectories is introduced in Section IV-B. The experiments
in Section V are aimed at demonstrating how a policy guided
by our algorithm decreases the number of unsuccessful
executions compared to policies guided by previous model-
based RL methods. A discussion of the reported results and
future research work is given in Section VI.

II. RELATED WORK

The possibility to use robust algorithms and simple local
policies with few parameters has made GPS a popular frame-
work to learn complex policies. The simple local policies are
employed as computational teachers that generate guiding
distributions for a nonlinear global policy. Such simple
policies are usually trajectory-centric representations such as
splines, dynamic movement primitives [9] and time-varying
linear-Gaussian (TVLG) controllers. The latter are popular in
stochastic optimal control and various trajectory optimization
methods, such as the iterative linear quadratic Gaussian
(iLQG) algorithm [10][11]. In this paper we also exploit
the properties of TVLG controllers to represent the simple
policies that generate the trajectory distributions from both
successful and failed executions. Typically the algorithms
used to optimize TVLG controllers assume a known (or
iteratively learned) dynamics model [12][13].

None of the aforementioned algorithms exploit the exis-
tence of poorly performing samples. In PI-GPS [14], the
samples with high cost-to-go values are practically ignored
if better samples are obtained in the same iteration because
of the assigned low-probability scores. Then, the high-cost
samples are barely considered in subsequent policy updates.
Note that giving this treatment to failed executions may
generate policy updates that still lead to failures in the
next few iterations. Nevertheless, learning from failures is
a promising approach to discover successful and safer ways
to accomplish tasks. If we explicitly consider a dataset of
negative/undesired samples, we can exclude regions in the
parameter space that lead to failures by favoring regions that
conduce to successful executions [15][16].

Notice that in inverse reinforcement learning (IRL), con-
sidering negative state-action trajectories generates more
accurate reward functions than methods relying on positive
trajectories exclusively. In [17], the authors included negative
demonstrations into the optimization of a maximum-causal-
entropy IRL method. In such a way, the method obtained,
in less iterations, linear rewards functions that generalized
better even when the successful and failed demonstrations
were contrasting, overlapping, or complementary. Choi et al.
[18] proposed to use a Gaussian process to represent a non-
linear reward function whose kernel moved the prediction
close to positive samples and drift it away from negative

ones. Beyond the fact that our work addresses a policy
search problem, the main difference of the aforementioned
approaches with respect to this paper is that the agent
does not have access to previous datasets of positive and
negative trajectories, but these are instead obtained during
its interaction with the environment and latter classified as
good or bad samples based on their accumulated cost.

Our approach is inspired by the dual relative entropy
policy search (DREPS) [8], a generalization of REPS [19]
that takes into account both good and bad samples when
computing a policy. In DREPS, a closed form update of the
parameters is obtained from the Lagrangian of an optimiza-
tion problem that bounds the KL divergence between the new
policy and precomputed low- and high-performance clusters
of parameters. Unlike DREPS, our algorithm is formulated
in a step-based policy search setting, which means that our
method has notion of state-space and sequential decisions. In
addition to this, our work is built on model-based RL, where
a (local) dynamics model is learned before carrying out the
policy optimization step. Lastly, our method does not directly
update the robot policy parameters, but it instead exploits
MDGPS to first optimize simple low-dimensional policies
using the proposed dualist constraints, and subsequently uses
the resulting guiding trajectories to update the parameters of
a complex global policy through supervised learning.

III. PRELIMINARIES AND OVERVIEW

We consider an episodic learning problem for a time
horizon T , where the robot behavior is defined by a
parametrized stochastic policy πθ(ut|xt), which is a dis-
tribution over actions ut conditioned on the state xt. The
goal of PS is to optimize the parameters θ with respect
to the expected cost Ep(τ) [`(τ)] = Eπθ

[
∑T

t=1 `(xt,ut)].
The expectation is computed with respect to the trajectory
τ = (x1,u1, . . . ,xT ,uT ), whose distribution is induced by
the policy πθ and the system dynamics p(xt+1|xt,ut):

πθ(τ) = p(x1)

T∏
t=1

πθ(ut|xt)p(xt+1|xt,ut),

where p(x1) is the initial state distribution.

A. Model-based trajectory-centric reinforcement learning

The iterative linear quadratic Gaussian algorithm (iLQG)
[10][11] is an efficient indirect method for trajectory opti-
mization. Unlike differential dynamic programming (DDP),
iLQG only uses the first derivative of the discrete-time dy-
namics, thus allowing a faster dynamics evaluation that out-
weighs the decrease in performance. The algorithm considers
a quadratic expansion of the cost around a nominal trajec-
tory τ̂ = (x̂1, û1, . . . , x̂T , ûT ), and a local linear-Gaussian
approximation of the dynamics N (fxtxt + futut + fct,Ft)
with a covariance Ft, and a mean given by the gradients fxt
and fut, and a constant term fct. Under these assumptions,
the first and second derivatives of the state-value and action-
value functions, namely V (xt) and Q(xt,ut) respectively,
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are:

Qxu,xut = `xu,xut + fT
xutVx,xt+1fxut

Qxut = `xut + fT
xutVxt+1

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,xt

Vxt = Qxt −QT
u,xtQ

−1
u,utQut

where the derivatives are denoted by subscripts, so for exam-
ple `xut is the gradient of the cost at time step t with respect
to [x,u]T and `xu,xut the Hessian. The optimal linear control
law that minimizes Q(xt,ut) is g(xt) = ût+kt+Kt(xt−
x̂t), where Kt = −Q−1

u,utQu,xt and kt = −Q−1
u,utQut.

A Gaussian trajectory distribution p(τ) can be obtained
by considering a linear-Gaussian controller p(ut|xt) =
N (Ktxt + kt,Ct). The mean of this distribution is given
by the above deterministic solution assuming, for notational
convenience, that the nominal states and actions are zero.
The covariance Ct is proportional to the curvature of the
Q-function, Ct = Q−1

u,ut. Note that this linear-Gaussian
controller also optimizes the maximum entropy objective as
shown in [12], which is formulated as:

p(τ)← argmin
p(τ)∈N (τ)

Ep(τ) [`(τ)]−H(p(τ))

s.t. p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft)

When the dynamics is unknown, a distribution
p(xt+1|xt,ut) can be estimated around the trajectories
sampled from the real system under the previous linear-
Gaussian controller p̂(ut|xt). To prevent the dynamic
programming pass in the iLQR from drastically modifying
the new controller, which makes the local dynamics invalid
around the new trajectory distribution, the policy update
should be constrained. Levine & Abbeel [12] proposed
to include a KL divergence constraint on the previous
trajectory distribution p̂(τ), as follows:

min
p(τ)

Ep(τ)[`(τ)] s.t. DKL(p(τ)||p̂(τ)) ≤ ε, (1)

where ε denotes the maximal information loss, and the
dynamics constraint has been omitted for clarity. The La-
grangian of (1) is

L(p(τ), η) = Ep(τ)[`(τ)] + η[DKL(p(τ)||p̂(τ))− ε],

and since p(xt+1|xt,ut) = p̂(xt+1|xt,ut), the resulting
Lagrangian becomes

L(p(τ), η) =

[
T∑

t=1

Ep(xt,ut)[`(xt,ut)− η log p̂(xt,ut)]

]
− ηH(p(τ))− ηε (2)

The above problem is solved in [12] by dual gradient
descent, alternating between a dynamic programming pass to
minimize the Lagrangian with respect to p(τ), and adjusting
η according to the amount of constraint violation.

B. Guided policy search algorithms

Complex nonlinear models, such as neural networks, allow
policies to model complex behaviors and permit to work
directly with sensory input data [2][3][4], at the expense
of learning thousands of parameters. Despite the important
advances in model-based and model-free PS methods [1],
their application is generally limited to specific policy rep-
resentations with less than a hundred parameters, or require
a prohibitively amount of interactions with the environment
[2]. Instead of optimizing the parameters directly from the
expected cost, GPS methods transform the policy search
problem into supervised learning, where the training set
is generated by a computational teacher, optimized by ei-
ther simple trajectory-centric RL algorithms [4] or complex
trajectory optimization methods [5]. In such a way, the
convergence of a global policy that minimizes the expected
cost is obtained by solving

min
θ,p(τ)

Ep(τ)[`(τ)] s.t. pi(ut|xt) = πθ(ut|xt) ∀t, ∀i,
(3)

meaning that the learning process of the global policy is
indeed divided into a domain-specific optimization of local
policies pi(ut|xt), and a supervised phase for the global
policy πθ(ut|xt) so that it matches the simple policies. When
pi(ut|xt) is represented by a TVLG controller, the method
described in Section III-A can be used.

The constrained minimization problem in (3) guarantees
that the global policy minimizes the expected cost at conver-
gence, but barely focus on the robot behavior in intermediate
iterations. This limitation is solved by MDGPS [7], which ap-
proximates a local TVLG controller π̄θ(ut|xt) to the global
policy πθ(ut|xt), by reformulating the local policy constraint
in (1) as (under linearity and convexity assumptions):

min
p(τ)

Ep(τ)[`(τ)] s.t. DKL(p(τ)||π̄θ(τ)) ≤ ε, (4)

where π̄θ(τ) is the trajectory induced by π̄θ(ut|xt).
Note that the global policy learned by GPS exclusively

focus on behaviors provided by the guiding distributions
pi(τ), meaning that it ignores completely how these tra-
jectories were obtained. Thus, if we require the complex
global policy to consider bad behaviors during the learning
process, the local policies updates must explicitly consider
the undesired high-cost experiences into the optimization
problem. In such a way, the policy search is expected to
avoid policy parameters that generate unsafe or unsuccessful
executions, therefore being less prone to failures.

IV. DEEP REINFORCEMENT LEARNING WITH
DUALIST UPDATES

First of all, let us define G and B as the sets representing
good and bad experiences, respectively. In a policy search
setting, these experiences are encoded by good and bad
trajectory probability distributions that are generated from
successful (low cost) or failed (high cost) task executions.
These trajectory distributions can be explicitly considered in
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the policy update by including an upper bound on the KL di-
vergence between the new and good trajectory distributions,
and a lower bound on the KL divergence between the new
and bad trajectory distributions. In this way, similarly to [8],
we reformulate the policy update as follows

θ ← argmin
θ

Eπθ(τ) [`(τ)] (5)

s.t. DKL(πθ(τ)||gc(τ)) ≤ χ, c ∈ G
DKL(πθ(τ)||bd(τ)) ≥ ξ, d ∈ B

where gc(τ) are the good trajectory distributions in G, bd(τ)
are the bad trajectory distributions in B, χ the maximal infor-
mation loss with respect to the good trajectory distributions
and ξ the minimal information loss with respect to the bad
trajectory distributions. The interpretation of these dualist
constraints is very intuitive: our policy learns parameters that
generate trajectories that differ from trajectory distributions
that induce bad behaviors while resembling trajectories that
lead to successful executions.

Note that when the policy is represented by a deep neural
network, the optimization process using typical RL methods
is infeasible due to the high dimensionality of the policy
parameters. Therefore, we propose to use GPS (described
in Section III-B) and generate guiding local policies to
assist and accelerate the policy search process. In this sense,
GPS needs to be reformulated in order to include dualist
constraints as explained next.

A. Model-based (trajectory-centric) RL with dualist updates

Without loss of generality, both good and bad behaviors
are defined by a single trajectory distribution each. Then,
the cardinalities of the good and bad sets are |G| = |B| =
1. Let us define good and bad policies as g(ut|xt) and
b(ut|xt), that induce a good trajectory distribution g(τ) and
a bad trajectory distribution b(τ), respectively. Therefore, the
policy update p(τ) can be reformulated as

p(τ)← argmin
p(τ)

Ep(τ)[`(τ)]

s.t. DKL(p(τ)||p̂(τ)) ≤ ε

DKL(p(τ)||g(τ)) ≤ χ

DKL(p(τ)||b(τ)) ≥ ξ. (6)

The Lagrangian of (6) is defined as

L(p(τ), η, ω, ν) =Ep(τ)[`(τ)] + η[DKL(p(τ)||p̂(τ))− ε]

+ ω[DKL(p(τ)||g(τ))− χ]

+ ν[ξ −DKL(p(τ)||b(τ))], (7)

where η, ω and ν are the Lagrange multipliers controlling
the relevance of each inequality constraint in (6).

Due to the linear-Gaussian dynamics assumption, the
minimization of (7) with respect to p(τ) can be written as:

min
p(τ)

Ep(τ)

[
T∑

t=1

Ep(xt,ut)[
˜̀(xt,ut)]

]
−H(p(τ))

− 1

η + ω − ν
[ηε+ ωχ− νξ] (8)

Algorithm 1 Dualist GPS

1: Initialize pi
2: for iteration k = 1 to K do
3: Run pi to collect trajectory samples Di = {τi}
4: Fit linear-Gaussian dynamics pi(xt+1|xt,ut) to Di

5: Fit linearized global policy π̄θi
(ut|xt) to Di

6: Update g(τ) and b(τ) from Di

7: Adjust ε
8: Optimize pi from Equation (9)
9: Optimize πθ from Equation (13)

10: end for

where

˜̀(xt,ut) =
1

η+ω−ν [`(xt,ut)− η log p̂(ut|xt)− ω log g(ut|xt) + ν log b(ut|xt)] .

Then, considering this augmented cost ˜̀(xt,ut), the pri-
mal problem in (6) can also be solved using (8) with a
process similar to that described in Section III-A.

B. Dualist GPS

Learning a complex nonlinear policy by solving problem
(5) usually requires a large amount of interactions, where
failed (possible dangerous) executions might arise until an
acceptable suboptimal policy is obtained. These failures
may lead to serious consequences on the robot and the
environment it interacts with. Therefore, by reformulating the
GPS framework to include dualist constraints, we can reduce
not only the number of data required to learn πθ(ut|xt), but
also the robot failures during the learning process.

As mentioned in Section III-B, a global policy learned by
the classical GPS optimizes its parameters based only on the
behaviors provided by the guiding distributions pi(τ). Thus,
using trajectories optimized with our trajectory-centric RL
algorithm, implies that the global policy πθ(ut|xt) considers
both good and bad experiences, as outlined in Algorithm 1.

Our algorithm employs MDGPS to learn the global policy.
Therefore, the optimization problem (6) for each local policy
i is rewritten as

pi(τ)← argmin
pi

Epi(τ)

[
T∑

t=1

`(xt,ut)

]
(9)

s.t. DKL(pi(τ)||π̄θi
(τ)) ≤ ε (10)

DKL(pi(τ)||gi(τ)) ≤ χ (11)
DKL(pi(τ)||bi(τ)) ≥ ξ (12)

where, π̄θi
(τ) is the trajectory induced by the local TVLG

approximation π̄θi
(ut|xt). Note that good gi(τ) and bad

bi(τ) distributions are defined for each pi(τ), and updated
by samples generated by their respective TVLG controller.

The supervision step in MDGPS is the same as the original
formulation, meaning that the global policy is obtained by:

πθ ← argmin
θ

∑
t,i,j

DKL(πθ(ut|xt,i,j)||pi(ut|xt,i,j)) (13)
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C. Defining good and bad experiences

Classifying a sampled trajectory either as good or bad,
clearly involves an assessment based on different, possibly
many, criteria. If the learning process is carried out under
the supervision of a human, then the human may provide
feedback regarding the goodness of every robot execution.
But in autonomous settings, our expectations of what we
want the robot to do and not to do are mainly captured
by the cost function. The main goal of a robot in an RL
problem is to minimize the expected cost. For this reason,
bad experiences are here defined as undesirable trajectories
that have a high expected cost. Similarly, good experiences
are trajectories with low expected cost. In such a way, at
each iteration k, ng good samples and nb bad samples are
used to update the trajectories in G and B, respectively.
Note that these definitions rely on the fact that the cost
function captures not only how the robot behavior should
be to perform optimally, but also how it should never be.

As we mentioned previously, we assume that the cardi-
nalities of the good and bad sets are |G| = |B| = 1. This
involves that all the ng samples with lower cost are used to
update a single good trajectory distribution g(τ) and all the
nb samples with high cost are used to update a single bad
trajectory distribution b(τ). However, there are different ways
to construct the distributions g(τ) and b(τ), in this paper
we obtain them by following the same method employed
in MDGPS to get the local TVLG approximation π̄θ(τ).
Specifically, at each iteration k, we fit a TVLG controller to
the observed good trajectories and another TVLG controller
to the observed bad trajectories.

V. EXPERIMENTS

The proposed framework was evaluated in two reaching
tasks with collision avoidance. Both a simulated 3-DoF
planar manipulator and a simulated humanoid robot were
required to reach a desired Cartesian pose while avoiding an
obstacle that is halfway.

A. Planar manipulator robot

1) Description: In the first experiment, the RL agent is a
3-DoF planar manipulator as shown in Fig. 1. The state of the
task is defined by x ∈ R12, composed of joint positions q ∈
R3, joint velocities q̇ ∈ R3, and end-effector pose relative
to the target g ∈ R3 and to the obstacle o ∈ R3. The action
u ∈ R3 corresponds to the robot torque commands.

The cost function that evaluates the performance of the
task execution was defined as:

`(τ) = `(xT ,uT ) +

T−1∑
t=1

`(xt,ut) (14)

with final cost

`(xT ,uT ) = w1(γ1 + ||gT ||2)1/2 + w2||gT ||2+
w3max(dSAFE − d(oT ), 0),

Fig. 1: Reaching task of a planar manipulator. The robot
should learn to reach a target Cartesian pose (depicted in
green) without touching an obstacle (red cylinder). During
the iterative learning process, the robot may collide with the
obstacle generating high-cost executions that are considered
failures. Such failed executions are exploited by our dualist
GPS to provide safer global policies.

and stage cost

`(xt,ut) = w4(γ2 + ||gt||2)1/2 + w5||gt||2+
w6max(dSAFE − d(ot), 0) + w7||ut||2

where w1 = 1.0 × 104, w2 = 50.0, w3 = 2.0 × 106, w4 =
10.0, w5 = 5.0× 10−2, w6 = 2.0× 103, w7 = 1.0× 10−6,
γ1 = 10−10, γ2 = 10−10, dSAFE = 0.15, and d(o) is the
signed distance evaluated on o. The cost term max(dSAFE −
d(ot), 0) is a hinge loss that does not penalize the robot
if the distance o is further than dSAFE and favors collision
avoidance behaviors [20].

The global policy consisted of a fully connected feed-
forward neural network with two hidden layers of 40 rectified
linear units each. Four Cartesian target and obstacle poses,
defined by the 2D position and orientation with respect
the vertical axis, were randomly generated. Therefore, four
TVLG controllers (i = 4) were iteratively optimized as
guiding policies.

The experiments carried out in this scenario were focused
on analyzing how many times and how fast the robot
approached, or even collided, with the obstacle, during the
iterative learning process. First, we carried out an experiment
aimed at observing the effect of discarding the worst samples
in the supervised learning (SL) step of MDGPS. As a result
the NN is trained to match a smaller dataset but only
composed of non-bad trajectories. This intuitive strategy may
be justified by the fact that we require the global policy to
not reproduce the trajectories that generated high-cost. This
strategy is in some way similar to that followed by most
of PS methods, which discard or give low probability to
unsuccessful trials.

Latter, we compared three different GPS formulations. The
first one did not consider neither (11) nor (12) constraints,
hence corresponding to the standard MDGPS. The second
formulation only took into account bad experiences, which
means that (11) was not considered in the policy updates. The
third formulation corresponded to the full dualist approach
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proposed in this paper, which exploits both good and bad
experiences. These formulations are here referred to as
MDGPS, B-MDGPS and D-MDGPS, respectively. All of
them were run with 50 iterations using the same set of
hyper-parameters, except by those related with the dualist
constraints. Six trajectories were sampled at each iteration
from every local policy, and subsequently the sample with
lowest cost was used to update the good trajectory distribu-
tion, while the sample with highest cost was used to update
the bad trajectory distribution (ng = 1 and nb = 1). Both
dualist trajectory distributions had a fixed covariance. In
order to carry out fair comparisons, the noise required by
the whole exploration phase was identical for all the three
aforementioned cases.

2) Results: Figure 2 shows the effect of discarding
the worst samples in the SL step of MDGPS. The
bottom plot displays the accumulated safe-distance cost,∑T

t=1 max(dSAFE − d(ot), 0), for the training conditions,
where high values indicate that the resulting trajectory gener-
ated a dangerous robot end-effector movement as it was very
close to the obstacle. Thus, the higher the value, the worst
the trajectory, and therefore the more important it is to avoid
trajectory distributions that generate this undesired behavior.
Note that despite we identified the negative samples that
generated the higher values of this cost and discarded them
as training data for the SL step, the neural network policy
(and subsequently the trajectory distributions that guided it)
continued passing near the obstacle. Only after some more
iterations the updated trajectories resulted in end-effector
movements that avoided the obstacle.

On the other hand, the top plot of Fig. 2 shows that
discarding the bad samples causes the robot to require more
iteration to reach the desired pose, therefore, it has a negative
impact on the main objective of the task. This effect may
arise as consequence of the reduction of the training dataset
used to train the neural network, which deteriorated its
performance. Again, only after some more iterations (and no
more bad trajectories), the final performance was the same
as the standard MDGPS.

As stated previously, our main motivation to learn from
bad experiences is to reduce failures during training. Fig-
ure 3 shows the accumulated safe-distance cost generated
during the exploration phase. Observe that the formulation
with only bad experiences and our approach iterated more
safely during the exploration when compared to the classic
MDGPS. Note that B-MDGPS tended to produce fewer
failures, in other words, it generated fewer undesired end-
effector movements that led to collisions with the obstacle.
However this safer trajectory distributions entailed a decrease
in the task performance (Figure 4), where more iterations
were required to train the NN policy in contrast to the other
two formulations. On the other hand, the training phase of
the proposed D-MDGPS generated less dangerous robot end-
effector movement than the standard MDGPS. Moreover,
the resulting NN policy showed a performance quite similar
to the standard MDGPS. Therefore, the proposed approach
offers a good compromise that leads the robot to fail less
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Fig. 2: Disregarding the worst samples in the SL step of
MDGPS does not only avoid that the planar robot keeps
failing, but also increase them. MDGPS label means that all
the 6 samples for each local policy are considered. MDGPS
no 1/6 worst, means that the worst sample (the one with
highest cost) is disregarded. MDGPS no 2/6 worst means
that the two samples with highest cost are disregarded.
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Fig. 3: Total safe-distance cost,
∑T

t=1 max(dSAFE−d(ot), 0),
incurred by the trajectory samples of the planar manipulator
robot in each iteration.

and smoothly update its policy.
Note that there is a peak in the safe-distance cost at

iteration 3 in Fig. 3. This due to the fact that the robot end-
effector is initially quite far away from the target, which can
be considered as an undesired behavior based on the given
cost function. Consequently, D-MDGPS fits a bad trajectory
distribution to these samples, and then by constraint (12),
the new trajectory distributions are different than these
trajectories. Despite these updates are quite aggressive and
the robot generates trajectories with high safe-distance cost
at iteration 3, these executions are now considered bad, and
then the updated trajectory distributions do not generate such
negative trajectories in the next iteration (iteration 4).

B. CENTAURO robot

1) Description: The second reaching task was carried out
by a simulated CENTAURO robot. In this environment, the
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Fig. 4: Final distance from the end-effector of the planar
robot to the target Cartesian pose. Top figure shows the
performance on the initial conditions used to train the policy,
and the bottom figure, the performance on the test set.

humanoid seeks to reach a Cartesian pose while avoiding a
cylindric obstacle that is halfway, as shown in Fig. 5. The
state of the task is defined by x ∈ R26, composed of joint
positions of the right arm q ∈ R7, joint velocities of the
right arm q̇ ∈ R7, and both position and orientation errors
between the right hand of the robot and the target g ∈ R6

and the obstacle o ∈ R6. The action u ∈ R7 corresponds
to the robot right arm task-torque commands. As we can
notice, this learning task is more complex than the one in
the previous experiment because, first, its state-action space
has higher dimensionality, and second, the target is closer to
the obstacle which increases the possibility of colliding with
the obstacle.

The cost function of the task is similar than the previous
experiment, except by the use of a Lorentzian ρ-function
[21]. Specifically, we replace (γ1 + ||gT ||2)1/2 by log(γ1 +
||gT ||2) in the final cost and (γ2 + ||gt||2)1/2 by log(γ2 +
||gt||2) in the stage cost. With this change, we now consider
w1 = 300, w2 = 300, w3 = 500, w4 = 30, w5 = 30, w6 =
50, w7 = 0.1, γ1 = 10−5, γ2 = 10−5, and dSAFE = 0.217.

The architecture of the NN global policy consisted of two
fully connected hidden layers of 64 rectified linear units each.
Similarly to the previous experiment, four TVLG controllers
(i = 4) were iteratively optimized as guiding policies.

2) Results: Figure 6 shows the accumulated safe-distance
cost generated by CENTAURO during the exploration phase
of the reaching task. As in the previous experiment, both B-
MDGPS and D-MDGPS generated safer trajectories because
they involved lower safe distance cost. On the other hand,
Fig. 7 shows the final distance of the right hand with respect
to the target. As we can notice, because both B-MDGPS
and D-MDGPS force the updated trajectory distribution to
be dissimilar to the high safe-distance cost trajectories, the

Fig. 5: Reaching task of CENTAURO. The humanoid is
requested to learn to reach a desired Cartesian pose (depicted
in green) with its right arm without touching the obstacle (red
cylinder).
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Fig. 6: Total safe-distance cost,
∑T

t=1 max(dSAFE−d(ot), 0),
of the trajectory samples generated by the CENTAURO robot
in each iteration.

new trajectories generated at the next iteration have lower
safe-distance cost. For this reason, we can see strong changes
at the following iterations. Unfortunately, because the target
is designed to be closer to the cylinder, in comparison to the
previous experiment, the proposed method tries to minimize
the total cost function, and then tries again to generate
trajectories closer to the desired Cartesian pose, and then
because the stochasticity of the local policies, close again to
the obstacle. This situation generated the behavior observed
in the Fig. 7.

VI. DISCUSSION AND FUTURE WORK

We presented a model-based trajectory-centric RL algo-
rithm that explicitly considers good and bad experiences
by bounding the KL divergence between the new trajectory
and trajectory distributions encoding successful and failed
executions. Good and bad trajectories are obtained from
samples with low and high costs, respectively. However,
this approach can be easily extended to include human
assessments regarding the goodness of every robot execution,
so that the trajectory distributions are influenced by human
expertise.

The proposed formulation allows the robot to reduce the
cost related to failures during the training phase, resulting
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Fig. 7: Final distance from the CENTAURO’s right-hand to
the target Cartesian pose. Top figure shows the performance
on the initial conditions used to train the policy, and the
bottom figure, the performance on the test set.
in safer explorations when compared to approaches that do
not explicitly consider dualist constraints. We additionally
proposed to use the trajectories optimized with this method
as guiding samples in a GPS setting. Specifically, we adapted
the MDGPS formulation to train a high-dimensional global
policy represented by a general-purpose neural network. In
this way, we obtained a deep neural network policy that
considered both good and bad behaviors in its learning
process, which extends the MDGPS learning capabilities.

We evaluated our approach in two reaching tasks using
a simulated planar robot and a simulated humanoid robot.
The reported results supported our hypothesis that specifying
dualist updates reduces the cost related to failures during the
exploration phase. Additionally, we showed that discarding
bad samples from the training dataset in which the global
policy is trained on, does not necessarily avoid that the policy
generates bad trajectories.

A possible limitation of our approach is that the pro-
posed optimization could be infeasible because there is no
trajectory distribution satisfying all the hard constraints at
the same time. Additionally, considering dualist constraints
might produce very conservative or aggressive policy up-
dates, then increasing the number of samples required to
converge. A possible solution to overcome these problems
is to automatically adjust the upper and lower bounds of
the good and bad trajectories at each iteration, similarly as
done with the bound between the new policy and the TVLG
controller approximation of the global policy in MDGPS.

The dualist GPS problem formulated in this paper requires
that different sets of good and bad trajectories for each initial
condition are defined. It may be interesting to find a method
that permits to generate these sets from GPS formulations
that do not require to deterministically reset into initial states
[22]. Finally, the dualist constraints of our algorithm operate
at the level of the induced trajectory distributions p(τ). Our

future work will consider to impose these constraints at each
time step in order to modify each linear-Gaussian policy with
respect to their expected Q-value, similarly to [23]. With this
change, we expect that the dualist constraints have a different
effect in specific regions of the resulting trajectories.
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