
Redundant Strain Measurement of Link Structures for Improved
Stability of Light Weight Torque Controlled Robots

Hiroshi Kaminaga1 and Fumio Kanehiro1

Abstract— Robots that perform useful heavy-duty tasks are
gaining attention in the field of construction, mining, and
disaster recovery. For robust accomplishment of such tasks,
control of interaction force is important fundamental function-
ality. Use of joint torque sensors is the most common method
for robots that realize physical interaction. However, torque
sensors add weight and reduce joint stiffness which result
in loss of mobility performance. In this paper, joint torque
sensing using link structure strain measurement is presented.
Redundant strain gauges, placed in unstructured manner, are
used to measure link deformation, which are then used to
estimate all 6 components of the wrench acting on a link
structure. Joint torque is then extracted from this wrench,
which minimizes the cross-talks of the force measurement.
Redundancy enhances the measurement accuracy and realizes
fault tolerant force measurement. Simulation and experimental
results of the measurement concept together with the fault
recovery method are presented.

I. INTRODUCTION

Force or torque controlled robots are gaining attention in
the field of service robots including humanoid robots, which
require interaction with uncertain and versatile environment
and objects.

In industrial robots, wrist force / torque sensors are used to
control physical interaction. Since industrial robots are used
in controlled environment with known objects, wrist sensors
are sufficient for measuring interaction force. Similar idea
is used in locomotion stabilization in biped robots, where
contact points can be limited to the end of both limbs.

This, however, is not true for robots in general environ-
ment. For such robots, contact may be multiple, spanning
over multiple links of the limb. To properly control the
interaction in such robots, different approach must be taken.
Fig. 1 shows different types of force and torque measurement
on a robot. One approach is the distributed tactile sensing.
Mittendorfer et al.[1] proposed self organizing distributed
tactile sensing technology. This approach is useful in delicate
interaction control, but for tasks that explicitly require control
of the force being transmitted, force or torque measurement
in-line to the force transmission path is desirable.

Use of a joint torque sensor is the most widely used
method. DLR’s Light Wight Robot III[2], commercially
available from KUKA, probably is the most well known
and successful robot with strain gauge based torque sensors.
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Fig. 1. Differences in Force / Torque Measurement for Force Sensitive
Interaction Control

Recently, Chimp[3] and WALK-MAN[4] used relatively stiff
SEAs (Series Elastic Actuators)[5] for torque sensing.

There are two large issues of the torque sensor based
torque sensing. The first point is the trade-off of the con-
trol bandwidth and force sensitivity. Control bandwidth is
affected both from the limited flexure stiffness and the extra
weight being added from the flexure. The second point is the
measurement cross sensitivity. The torque measurement is
the activity of selecting one component of 6 axis force-torque
wrench. This is done by measuring deformation of flexure,
which has significantly lower stiffness in the direction of
measurement from the other direction that are supported
by bearings. Stiffer flexure is desirable from the control
bandwidth point of view, but the difference of the stiffness
of the flexure and bearings becomes small, which results in
the measurement cross sensitivity[6].

Measuring force acting on a connecting rod of the linear
actuator driven parallel link mechanism[7] enables us to
eliminate necessity of extra component for torque sensing
as shown in Fig. 1. Since only compression or tensile
stress acts on such component, rather accurate torque can be
estimated from the strain measurement with simple kinematic
conversion and the cross-talk can be rejected mechanically.
However, the main limitation of the method is that it can
only be applied for parallel link actuated joints. It can be
a large drawback for the robots that require large range of
motion of the joints.

Study of exploiting redundant sensors can be found in
previous works. For the case of strain gauges, Nishiwaki et
al.[8] used ball-beam structure with redundant strain gauges.
Lane et al.[9] used redundant strain gauge measurement
spanning over multiple linkages. Tsuji and Hanyu[10] used
redundant 3 axis force sensors to detect and recover defective
force measurement. These studies rely on sensor placement
precision, and thus are limited in the number of redundant
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TABLE I

COMPARISON OF FORCE MEASUREMENT METHOD

Distributed
Tactile
Sensor

Torque
Sensor

Parallel
Link

Redundant
Link Strain
(Proposed)

Collocation
with
Actuators

no yes yes yes

Additional
Component

yes yes no no

Crosstalk
Rejection

yes no yes yes

Actuator
Dependent

no yes yes no

Fault Toler-
ant

yes no no yes

sensors.
The objective of this paper is to overcome the limitation

of the methods above by measuring force acting on link
structures. We propose to use redundant strain gauges on
link structures with unstructured placement to enhance signal
quality and fault tolerance against failures of the gauges. See
Table I for the qualitative comparison of the proposed method
with the other methods. With the proposed method, no addi-
tional components are necessary and no stiffness reduction
will occur. Also, the proposed method is independent from
the actuation method. Evolutions in the electronics enables
us to treat strain gauge signals with high quality in a small
circuit board, which can be connected in daisy-chain manner.
It enables us to use large number of strain gauges with
minimum cabling. The proposed method requires calibration
of all the links, but it can be done simultaneously, since
all components of the wrench are measured. This was not
possible for the case of torque sensors. The placement of the
strain gauges can be arbitrary as long as directional diversity
is maintained. The proposed method estimates the relation of
6 axis wrench acting on a link structure from the redundant
strain measurement. Joint torque is then extracted from the
wrench, which results in ideal cross sensitivity decoupling.
Finally, the redundancy is used to suppress the error when
a strain gauge become dysfunctional. We adopt the fault
detection algorithm proposed by Tsuji et al.[10] and propose
the recovery algorithm that use mapping matrices with partial
strains to the wrench. Simulation and experimental results are
reported.

II. REDUNDANT STRAIN GAUGE MEASUREMENT

In conventional strain gauge force measurement, what is
called “active four-gauge method” is used. In this method,
strain gauges on antagonistic surface are connected as shown
in Fig. 2. Using this method, the voltage readout becomes 4
times larger for the same stress and the thermal effect can
be removed.

However, the value obtained from the four-gauge method
is not yet ideal. One problem is the geometric placement
error and the other is the uneven thermal effect.

To explain the first point, see Fig. 3. It is difficult to
correctly place strain gauges and there exists alignment error

Fig. 2. The Concept of Redundant Strain Measurement Based Force
Measurement

Fig. 3. Measurement Error of Strain Gauges Caused by Alignment Error
and Poisson Effect

of angle θe.
Strain is a tensor value and each of the inifinitesimal

element is expressed with six components with regarding to
a coordinate system: linear strains (εx, εy, εz) and torsional
strains (γxy, γyz, γzx). A strain tensor T is defined as follows.

T =

⎡
⎣ εx

1
2γxy

1
2γzx

1
2γxy εy

1
2γyz

1
2γzx

1
2γyz εz

⎤
⎦ (1)

The Poisson effect relates stress σi and strain εj in multiple
direction. Using Poisson’s ratio ν, Hooke’s law can be
written as follows using Young’s modulus E.

εx =
1

E
{σx − ν (σy + σz)} (2)

εy =
1

E
{σy − ν (σz + σx)} (3)

εz =
1

E
{σz − ν (σx + σy)} (4)

Hence, even when the pure stress in x direction, both εx
and εy will be observed. Poisson’s ratio is about 0.34 in
aluminum alloys.

Poisson’s ratio would cause cross sensitivity of strain in x
direction for stress in other direction. For an example, strain
of −νεy would be observed for pure y direction stress.

The strain tensor for pure x stress is given as follows.

T =

⎡
⎣ εx 0 0

0 −νεx 0
0 0 −νεx

⎤
⎦ (5)
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The measured strain in case of Fig. 3 is given as follows.

r =
[
cos(θ) sin(θ) 0

]T
(6)

ε(θ) = rTTr =
(
cos2(θ)− ν sin2(θ)

)
εx (7)

It would not only cause the measurement error on x axis
strain, but would deviate cross sensitivity for stress in y axis
direction by from −ν to sin2 θ − ν cos2 θ. The error can be
amplified for 4-gauge method since the error can add up with
directional error of all four gauges. Thus, use of any single
axis strain measurement is not suitable for measurement of
strain under versatile stress conditions.

In the proposed method, multiple of Wheatstone bridge
measurement with 1 strain gauge and 3 dummy gauges will
be used. In this method, no alignment between gauges is
necessary. Each bridge will be connected to a ratiometric
AD converter in the actual implementation, which enables
us to measure amount of strain with high precision under
existence of noise on the power line.

Let us define a vector of strain as ε ∈ Rn, where n is the
number of strain measurements. A wrench vector at the link
origin is defined as w ∈ R6. When the deformation of the
link is sufficiently small, stress and strain will have linear
relation. Since the wrench acting on a link is a integrated
value of the stress, we can assume the linear relation between
the strain and the wrench.

This relation can be written as follows:

w = Fε (8)

Here, F ∈ R6×n is a matrix that correlates strain and
wrench, which has information on Young’s modulus of the
link and geometric property of the strain measurement.

Let us assume the strain measurement ε∗ as an addition
of true strain ε̂ and Gaussian noise x with 0 average and σ
standard deviation, hence:

ε∗ = ε̂+ x (9)

The equation (8) becomes following form.

w∗
i =

n∑
j=1

fijε
∗
j =

n∑
j=1

fij ε̂j +
n∑

j=1

fijxj (10)

Here, the subscripts i and j indicates the row and column
position of the vectors and matrices respectively. The super-
script ∗ shows measured value. It is clear from (10) that if we
take sufficient n, estimated wrench converges to true value
under the existence of the noise.

Under the assumption of the strain-stress linearity and the
noise being Gaussian, the matrix F can be identified from
multiple measurements as follows:

F = WE# (11)

Here, # shows the pseudoinverse of a matrix, W =
[w1w2 · · ·wm] is the matrix consisting of m wrench mea-
surements, and E = [ε1ε2 · · · εm] is a matrix consisting of
m strain measurements.

Fig. 4. Map Between Strain Space and Wrench Space

III. FAULT DETECTION AND RECOVERY

Although ε has dimension n, there are geometric con-
straints that limits the value of ε in subspace E ⊂ R6 as
shown in Fig. 4. In this paper, we assume the dimension of
E to be 6. The assumption is that faulty measurements can
be identified by evaluating if ε ∈ E or not.

The inverse relation of the wrench and the strain can be
written as follows with G ∈ Rn×6.

ε = Gw (12)

Tsuji et al.[10] estimated G as in (13).

G = EW# (13)

Let us assume E as E =
{
ε ∈ Rn|ε = Gw, ∀w ∈ R6

}
If a measured strain vector ε∗ lies within E, then following
equation should hold.

ε∗ = GFε∗ (14)

The outlier can be estimated by evaluating e, the error
between the left hand side and the right hand side.

e = (I −GF ) ε∗ (15)

Here, I is the identity matrix of appropriate dimension.
In this paper, we detected an error by evaluating |ei| > eth.

Now, the threshold eth is chosen subjectively from the mean
value of |ei|, but clustering technique can be applied for more
objective evaluation.

a) Fault Recovery Method 1 (FR1): The first method
is the method proposed by Tsuji et al.[10]. In the proposed
method, value of the strain gauge with fault is projected
toward E. The recovered wrench w̃ is given by following
equations. The index i is the estimated index of strain gauge
with fault.

w̃ = F ε̃ = F
[
ε̃1 · · · ε̃n

]T
(16)

ε̃i = ε∗i − eT
qi

‖qi‖
(17)

where,
Q =

[
q1 · · · qn

]
= I −GF (18)

The advantage of the method is that it minimizes com-
putational effort by utilizing relation of the mapping shown
in Fig. 4. However, since the reverse mapping G is highly
redundant, it is correct only in the sense of least square.
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Fig. 5. Outlook, Mesh, and Simulated Strain Gauge Placement of Finite
Element Analysis. The figure shows an example of 100 strain gauges.

b) Fault Recovery Method 2 (FR2): Let us define
regression matrices of identification data Eī1,··· ,̄ik as E
with i1 to ik-th row excluded. Similarly define Fī1,··· ,̄ik as
follows.

Fī1,··· ,̄ik = WE#
ī1,··· ,̄ik (19)

Fī1,··· ,̄ik can be calculated off-line.
The recovered wrench data w̃ is given as follows with i1

to ik being the index of the element detected by |eik | > eth.

w̃ = Fī1,··· ,̄ikεī1,··· ,̄ik (20)

Here,εī1,··· ,̄ik is the vector of strain measurement with i1 to
ik-th row excluded.

The advantage of the method is that if the index of the
dysfunctional strain gauge was correctly detected, recovered
data should be optimal in the sense of least square. The
drawback of the method is that although Fī1,··· ,̄ik can be
calculated off-line it is not realistic to calculate exhaustive
combination of excluded indices, since the number of matri-
ces will grow exponentially with k.

However, the most likely case of the failure is single strain
gauge becoming dysfunctional. Hence, the realistic approach
is to expect single failure, and perform maintenance after the
operation if a failure was detected.

IV. SIMULATION

Simulation of the proposed method was carried out using
finite element analysis (FEA) of CAD software. H-shaped
cantilever beam was used as the specimen to see the direc-
tional effect, which cannot be observed with a cylindrical
beam. Position of the strain measurement was chosen to
be around the center of the beam. Position of the gauges
were randomly sampled from the position of the mesh data
obtained from FEA result. Fig. 5 shows setup used for the
simulation. Fig. 6 shows dimension of the flange for load
attachment. Eyebolts for load connection are attached to
p0 → p3.

Direction of the strain gauges on the measurement surface
was expressed as angle θ ∈ Rn with the x axis direction.
Each element of the θ was randomly sampled from θi ∈
(−π/2, π/2] with the uniform distribution.

Fig. 6. Load Attachment Dimension

TABLE II

TRAINING DATA SET

Set fx fy fz mx my mz

N Nm
1 20 0 0 0 -100e-3 0
2 10 0 0 0 -50e-3 -125e-3
3 10 0 0 0 -50e-3 125e-3
4 0 10 0 50e-3 0 8875e-3
5 0 10 0 50e-3 0 9125e-3
6 0 0 40 0 36000e-3 0
7 0 0 10 -250e-3 9250e-3 0
8 0 0 10 -250e-3 8750e-3 0
9 0 0 10 250e-3 9250e-3 0

Strain results of the FEA are given as linear strains
(εx, εy, εz) and torsional strains (γxy, γyz, γzx) regarding the
Cartesian coordinate X, Y, Z. To convert these values to the
strain gauge measurements, following tensor conversion was
used.

ε = rTTr (21)

T =

⎡
⎣ εx

1
2γxy

1
2γzx

1
2γxy εy

1
2γyz

1
2γzx

1
2γyz εz

⎤
⎦ (22)

r =

{ [
cos(θ) − sin(θ) 0

]T
(xy plane)[

cos(θ) 0 sin(θ)
]T

(xz plane)
(23)

To evaluate effect of the measurement noise, Gaussian
noise x was applied as follows:

ε∗ = ε+ x (24)

To evaluate the effect of the defective strain gauges, an
element of ε∗ as randomly selected and replaced with fault
value εf as ε∗i = εf .

To identify the matrix F , data shown in Table II were
used. The direction and magnitude of the applied force was
chosen to give sufficient excitation to all 6 components of
the wrench. To evaluate the wrench estimation performance,

TABLE III

CROSS VALIDATION DATA SET

Set fx fy fz mx my mz

N Nm
1 0 20 0 100e-3 0 18000e-3
2 0 0 10 250e-3 8750e-3 0
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TABLE IV

PERFORMANCE EVALUATIONS FOR 100 GAUGES(%): (3-X) SHOWS THE

RESULT FOR εf = 0με. (4-X) SHOWS THE RESULT FOR εf = 1000με

Type Data Set Mean Max Std. Dev.
(1) 1 1.600e-3 1.600e-3 -
No noise 2 0.1258 0.1258 -
(2) 1 14.66 54.78 9.182
Noise (σ = 1με) 2 29.69 111.0 18.59
(3-1) 1 87.42 445.9 75.42
Fault (0 με) 2 97.75 451.9 88.69
(3-2) 1 67.72 260.8 55.38
Fault recovery 1 2 97.75 451.9 88.69
(3-3) 1 14.76 53.46 9.273
Fault recovery 2 2 29.91 108.1 18.70
(4-1) 1 1467 5001 1033
Fault (1000με) 2 2937 10370 2151
(4-2) 1 66.17 545.3 89.77
Fault recovery 1 2 130.2 1224 180.2
(4-3) 1 14.71 53.46 9.261
Fault recovery 2 2 29.77 108.1 18.75
(5) 1 14.71 53.46 9.261
Ideal recovery 2 29.77 108.1 18.75

data shown in Table III are used for cross validation. Table IV
shows the result for the case of 100 strain gauges. Standard
deviation of the noise was chosen to be 1με, which is roughly
10% of the measured strain. Throughout the paper, we use
the unit ε to indicate the amount of the strain, hence 1με =
10−6ε.

The error of the result was evaluated as a norm of a error
vector ew defined as follows.

ew =
w∗ − ŵ

‖ŵ‖ (25)

Here, let us define ŵ and w∗ = Fε∗ as the true value and
the estimated value of the wrench respectively. Mean value,
maximum value, and standard deviation are calculated for
‖ew‖.

The ideal fault recovery data was obtained by FR2 method
in the previous section with the known faulty strain gauge
index.

Table IV and Fig. 7 shows the cross validation simulation
result for the case of 100 randomly placed strain gauges.
Data set shows the index of the data set shown in Table
III. Independent 1000 samples of the Gaussian noise were
applied to all the gauges to obtain statistical data. Strain
gauge with fault was selected randomly in each trial, with
uniform distribution.

From the result, the wrench can be estimated with limited
error for the case with no noise and the data with Gaussian
noise. The error becomes large in the case with strain
gauge fault, but both the recovery methods suppress fault
effectively. The error of FR2 became 24% of that of FR1,
which shows efficacy of FR2.

Next, the effect of noise on each component of the
estimated wrench and the number of strain gauges were
evaluated. Table V and Fig. 8 shows the simulated result.
From the result, we can see relatively large noise effect on
fx ( force in x direction). This is due to the stiffness. The
noise is multiplied in the direction of high stiffness.

Fig. 7. Simulation Result for 100 Strain Gauges(%). (3-x) shows the result
for εf = 0με. (4-x) shows the result for εf = 1000με

TABLE V

NOISE SUPPRESSION PERFORMANCE OF STRAIN GAUGE REDUNDANCY

n Direction Error Standard Deviation
x y z

100 Force (N) 1.801 0.3221 0.4454
Moment (Nm) 4.942e-3 0.2118 0.1504

50 Force (N) 3.040 0.5830 0.7089
Moment (Nm) 8.796e-3 0.3394 0.2737

20 Force (N) 5.759 0.9339 1.461
Moment (Nm) 14.08e-3 0.6812 0.4369

10 Force (N) 86.03 8.075 8.745
Moment (Nm) 0.1418 5.973 4.015

The noise is suppressed almost linearly with the number
of gauges in the range of 20 to 100. There is a large jump
from the data of 20 and 10. From the evaluation, number of
strain gauges above 20 is realistic. In this range, number of
strain gauges and the noise suppression performance are in
linear trade-off condition.

V. EXPERIMENT

The preliminary experiments were carried out for the proof
of the concept. In the experiment, 8 strain gauges were
applied on the top surface of the H beam and the bottom
surface as shown in Fig. 9. Although the analysis in the
previous section indicated the use of more than 20 gauges
is desirable, the number of strain gauges was limited by the
number of strain measurement channels of the AD converter,
which will be resolved in future studies. The effectiveness of
the redundancy can still be evaluated, with the limited noise
suppression performance.

The bias and noise power were measured at rest configu-
ration (external force = 0). Table VI shows the result. From
this result, standard deviation of the noise acting on each
strain gauge is about 1με, which is roughly the value that is
evaluated in the simulation.

The gain shown in Table VII are used in the identification
of F . Let us define the force value measured by the force
gauge as f . The truth data of the wrench is calculated by
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Fig. 8. Effect of Noise on Each Component of Wrench and Number of
Strain Gauges

Fig. 9. Experiment Setup

following equation.

w = g (f + fo) (26)

Here, fo is a value that compensates for the weight of the
force gauge, which are applied to the z-direction data with
the value of 80grams. g is the conversion column vector that
consist of row data shown in Table VII.

Similarly, truth data for cross validation was generated
using gain data shown in Table VIII.

The experimental result is shown in Table IX. The data
was collected at 25kHz, and the data shown here are
unfiltered. Data set 4 contains data with a strain gauge
disconnected. The result shows relatively large noise on fx,

TABLE VI

BIAS AND NOISE MEASUREMENT OF STRAIN GAUGES

Gauge ID Mean (με) Standard Deviation (με)
1 -757.0 1.001
2 -1241 1.004
3 -1487 1.024
4 313.7 1.021
5 -1100 0.9927
6 -926.3 0.9981
7 -1493 1.011
8 -1587 0.9940

TABLE VII

TRAINING DATA GAIN USED IN EXPERIMENT

Set fx fy fz mx my mz

m
1 1 0 0 0 -10e-3 12.5e-3
2 0 -1 0 -35e-3 0 -925e-3
3 0 0 -1 0 900e-3 0
4 0 0 -1 -25e-3 925e-3 0
5 0 0 -1 25e-3 925e-3 0
6 0 0 -1 0 900e-3 0

TABLE VIII

CROSS VALIDATION DATA GAIN USED IN EXPERIMENT

Set fx fy fz mx my mz

m
1 1 0 0 0 -35e-3 25e-3
2 0 -1 0 -35e-3 0 -900e-3
3 0 0 -1 -25e-3 925e-3 0
4 0 0 -1 0 900e-3 0

which was already expected from the simulation, but other
components show small error and noise. In reality, when the
data is used for torque control, the component of the force
that is to be used will be either mx, my, or mz. Also, from
the result, fault recovery is not causing a harm in the result
of the data set without strain gauge fault. For the actual fault
recovery, FR1 shows limited performance, but FR2 shows
signal error almost comparable to that of the case without a
fault.

Fig. 10 shows the time series data of data set 4. Note
that in all figures, estimated wrench with fault signal are
completely out of the range. Except for the graph of mx, FR1
is also out of the range. For the graphs except for fx, truth
and FR2 values overlap. From this graph, two results were
obtained. 1) Proposed method show good match with the
truth (fx: 3% error, 11% noise) 2) Proposed fault recovery
method show only small remaining error.

VI. CONCLUSIONS

In this paper, link strain measurement for force control
and joint torque control was presented. Redundant strain
gauges were placed in unstructured manner to improve signal
quality and fault tolerant behavior. Fault recovery method
using partial mapping matrix was proposed.

From the simulation, the concept of the redundant mea-
surement and fault recovery methods were verified statis-
tically with randomly sampled strain gauge position and
direction. The simulation result indicated that the force
measurement in beam compression directions tend to be
noisy due to the stiffness in the direction of the measurement.
Also, the simulation indicated the use of more than 20 strain
gauges is desirable from the signal quality point of view.

In the experiment, due to the equipment limitation, only
8 strain gauges were used. Still, the estimated wrench from
the 8 strain gauges showed good match with the truth. The
force in the direction of beam compression (fx) showed
the worst signal accuracy and noise, but still the error was
3% for the accuracy, and 11% noise. Since the result here
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TABLE IX

ERROR ANALYSIS OF THE EXPERIMENT

Data Error Mean Error Standard Deviation
Set fx (N) fy (N) fz (N) mx (Nm) my (Nm) mz (Nm) fx (N) fy (N) fz (N) mx (Nm) my (Nm) mz (Nm)
1 -1.717 -2.366 4.405 -0.04310 -2.925 -0.5930 3.516 0.8257 1.675 0.01825 1.117 0.3715
FR1 -1.717 -2.366 4.405 -0.04310 -2.925 -0.5930 3.516 0.8257 1.675 0.01825 1.117 0.3715
FR2 -1.717 -2.366 4.405 -0.04310 -2.925 -0.5930 3.516 0.8257 1.675 0.01825 1.117 0.3715

2 1.248 -0.6729 0.3170 -0.1063 -0.2998 -0.8105 3.855 0.4797 0.1158 0.02040 0.09038 0.4385
FR1 1.248 -0.6729 0.3170 -0.1063 -0.2998 -0.8105 3.855 0.4797 0.1158 0.02040 0.09038 0.4385
FR2 1.248 -0.6729 0.3170 -0.1063 -0.2998 -0.8105 3.855 0.4797 0.1158 0.02040 0.09038 0.4385

3 0.9815 0.01239 0.2298 0.006294 -0.2912 0.02373 3.440 0.2351 0.4813 0.02103 0.4467 0.2324
FR1 0.9815 0.01239 0.2298 0.006294 -0.2912 0.02373 3.440 0.2352 0.4813 0.02103 0.4467 0.2324
FR2 0.9815 0.01239 0.2298 0.006294 -0.2912 0.02373 3.440 0.2352 0.4813 0.02103 0.4467 0.2324

4 -74090 -4050 2496 -19.01 -1701 -4672 106.1 5.528 4.816 0.03154 3.361 6.440
FR1 -23370 -1278 788.1 -6.024 -537.2 -1474 102.1 5.307 4.680 0.03053 3.269 6.183
FR2 15.35 0.1142 0.7956 -0.03824 -0.4833 0.2975 4.408 0.2594 1.388 0.007730 1.047 0.2461

Fig. 10. Estimated (w∗), Recovered (FR1 and FR2), and Truth for Data
Set 4 (Strain Gauge 6 Disconnected). Note that direct estimation with fault
and FR1 data are plotted out of the range where the truth and FR2 plots
overlap in fy , mx, my , and mz.

weren’t filtered, filtering would significantly improve the
signal quality. Both from the simulation and the experiment,
fault recovery with partial mapping matrix (FR2) showed sig-
nificantly lower recovery error than the previously proposed
method for redundant force measurement[10].

Current limitation of the method is the cancellation of the
temperature effect. This can be resolved by including the

temperature data for calculation of mapping matrix F , but it
would require more redundancy of strain gauges that what we
have presented in this paper. Implementation of distributed
strain gauge electronics and use of more redundant gauges
are in the scope of the future studies.
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