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Abstract— It is in process to build robust robotics system
enabling whole-body multi-contact motion. In this paper, we
have experiments on knee-contact motions to preliminary in-
vestigate motion planning algorithm to generate whole-body
multi-contact behavior. Our motion interpolator is goal-oriented
in that the interpolator does not specify detailed contact
constraints such as fixed contact point on link, friction cone
constraints and timing of contact switching. The goal-oriented
feature enables to generate complex contact transition including
sliding, rotating and dynamic contact transition. The inter-
polator generates whole-body trajectory to achieve goal state
considering physical feasibility such as whole-body dynamics,
collision, and joint torque limitations by using dynamics simu-
lator. Further, the generated knee-contact motions are achieved
by actual humanoid robot RHP4B to check difference between
simulated motion and actual result.

I. BACKGROUND AND MOTIVATION

RHP4B robot [1] demonstrates standing up after slow
falling to shows that almost all of body surface are possible
to contact with environment. Among the research, we need
motion planning algorithm to deal with whole-body multi-
contact behavior. In this paper, we have experiments on
knee-contact motion to preliminarily investigate whole-body
multi-contact behavior. We have three reasons to choose
knee-contact motion; First reason is that knee-contact motion
is efficient as relay point between foot contact state such
as standing posture and whole-body contact state (Fig. 1).
Second reason is that the motion is safe and easy due
to large support region and low CoG (Center of Gravity)
of robot. Low CoG is efficient to falling experiments. For
example, although there are a lot of researches on falling
motion of robot [2][3][4], there are few experiments with
actual and especially large-size robot because robot breaks
after falling. However, low CoG motion is relatively safe
to fall, and the safeness is adjustable by changing the CoG
height. Third reason is that knee-contact motion includes
difficult feature of whole-body multi-contact motion. Knee
link is generally not simple plane which is frequently used
as foot contact model of walking [5] but spherical shape.
Although the shape enables various contacts such as rotating
and sliding, motions including such contacts are difficult
to be planned but are necessary for whole-body multi-
contact behavior. To deal with such complex contacts, both of
motion planner and balancing controller become complex. In
previous research on balancing control, ZMP-based contact
force control [6][7] and whole-body torque-based control
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Fig. 1. Knee contact motion plays key role in whole-body multi-contact
behavior as preliminarily experiments, relay posture to transit between foot
contact, and to safely experiment on falling motions.

[8] are proposed. Although we focus on motion planner in
this paper, we assume that such balancing controller will
be applicable to our planner. Previous researches on motion
planner use different types of algorithms including config-
uration search after contact search [9][10], complementarity
condition to consider contact or not contact at the same time
to search configuration space [11], and simulation-based evo-
lutionary search [12]. In this paper, we use simulation-based
approach in the following three reasons; First, we assume that
sampling-based search algorithm is better for whole-body
multi-contact behavior because motion planning considering
a lot of contact points is non-convex optimization problem
involving a lot of local solutions. Second, simulation-based
algorithm is possible to consider all contact states if the states
can be simulated. The merit is beneficial to complex contact
motion. Third, it is not necessary to specify detailed contact
condition. For example, our simulation-based algorithm does
not specify which part of link will have contact, when the
contact will be detached and what kind of contact condition
(e.g. sliding or rotating) will be. Instead, the algorithm
considers goal condition and physical feasibility such as
whole-body dynamics and collision. Such goal-oriented fea-
ture enables to generate complex contact behavior. In the
following sections, we show three experiments on knee-
contact motions: sitting down from foot contact to knee
contact, standing up from knee contact to foot contact and
rotating with knee contact. The three problems are solved in
simulation world and achieved with actual RHP4B robot to
confirm computational time of planning and reproductivity
in real world. The purpose of this paper is to investigate
whole-body multi-contact behavior through experiments on
knee-contact motions.
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II. METHOD TO GENERATE KNEE-CONTACT MOTIONS

An evolutionary search algorithm with dynamics simula-
tion is described in this section. The algorithm considers
whole-body dynamics and whole-body contacts with ground
satisfying joint torque and contact wrench limitations.

Algorithm 1 Pipeline of motion search using simulator
Require: tm : maximum simulation time, ∆t : time step.
Variable: t : current time in simulation world, qd : target

joint angle vector, G : array of genes, O : array of
objective value of genes.

Procedure: evolutionary search motion() # Main loop sim-
ilar to [13] implemented in NLopt [14]

1: G ⇐ uniform random genes()
2: while not is search converged() do
3: for all g ∈ G, o ∈ O do
4: o ⇐ eval gene(g) # Parallel computation here
5: end for
6: G ⇐ sort by objective(G, O)
7: G ⇐ update top30% by amoeba method(G)
8: G ⇐ mutate last70% by Gauss distribution(G)
9: end while

10: return G
Procedure: eval gene(g)

1: initialize simulator() # Initialize robot state in simulator
2: while t ≤ tm do
3: qd ⇐ calc Lagrange polynomial(g, t, tm) # Eq. (1)
4: step simulation(qd)
5: if is motion invalid() then
6: break # Error such as self collision as Eq. (5)
7: end if
8: 1/S + P ⇐ update score and penalty(1/S + P )
9: t ⇐ t+∆t

10: end while
11: return 1/S + P # Score and penalty (Eq. (3), (4))

A. Pipeline of motion search: settings of dynamics simulator
and evolutionary search algorithm

Pipeline of motion search using simulator is shown in
Algorithm 1. Main loop of the search is defined as evo-
lutionary search motion(). We use an evolutionary search
algorithm which involves mutation and amoeba method [13].
We preliminarily checked search capabilities of several non-
linear optimization algorithms implemented in NLopt [14],
and the evolutionary algorithm was the best. We reimplement
the algorithm by C++ language to enable parallel compu-
tation in evaluation of all genes by using shared memory
of Ubuntu OS. The search checks if simulation time is less
than maximum simulation time tm, updates score and penalty
function mentioned later (1/S + P , Eq. (3), (4)) and stops
calculation if invalid results appear such as self collision.

Pseudo code of our simple and fast simulator is shown
as Algorithm 2. We use Featherstone’s approach [15] to
solve forward dynamics (forward dynamics()), and linear
compliant contact model [16] to calculate contact force

Algorithm 2 Simplified code of simulator
Require: q : joint angle vector, ∆t : time step, Kp,d :

PD gain matrix of position control, kvp,d : PD gain to
calculate vertical force from ground insertion, khp,d : PD
gain to calculate friction force from sliding distance, n :
Ground normal vector, x0 : Ground position, µ : Ground
friction coefficient.

Variable: X : array of positions of all vertices to collide, V
: array of velocities of all vertices to collide, F : array
of contact forces on all vertices to collide, X ′ : previous
X , τ : target joint torque vector.

Procedure: step simulation(qd) # Simulate in one time step
1: τ ⇐ Kp(qd − q) +Kdq̇ # PD position control
2: forward dynamics(τ , F , ∆t) # Featherstone’s method

[15] to calculate acceleration from joint torque and Euler
method to integrate acceleration and velocity

3: [X , V] ⇐ forward kinematics() # All positions and
velocities of all vertices to collide

4: F ⇐ calc contact force(X , V)
Procedure: calc contact force(X , V)

1: for all x ∈ X , v ∈ V , x′ ∈ X ′, f ∈ F do
2: if (x− x0)

Tn < 0 then
3: fz ⇐ kvp(x− x0)

Tn+ kvdv
Tn # Vertical force

4: if x′ = NULL or fz ≤ 0 then
5: f ⇐ max(0, fz) n # No friction force
6: else
7: h ⇐ x− x′ # Friction direction
8: fx ⇐ khph+ khdv

Th/||h||
9: if ||fx|| > ||µfz|| then

10: fx ⇐ fx × ||µfz||/||fx|| # Sliding
11: else
12: x ⇐ x′ # No sliding and keep friction center
13: end if
14: f ⇐ fzn+ fxh/||h||
15: end if
16: else
17: f ⇐ 0, x ⇐ NULL # No collision
18: end if
19: end for
20: X ′ ⇐ X # Backup previous collide positions
21: return F

(calc contact force()). To simulate friction force, Simbody
[17] uses a function of horizontal velocity. In contrast, we
use both of horizontal velocity and distance from the first
collided point to express inner force in contact surface. The
pseudo code of contact force calculation are simplified to ex-
plain the experiments in this paper. For example, the pseudo
code consider only one plane as contact environment because
we demonstrate motions in a flat ground. PD gains and
friction coefficient of contact force calculation are common
to all vertices because all body parts of RHP4B are equally
covered by metal frame. However, the actual simulator im-
plementation can consider collision between convex bodies
and different settings of contact model for each body part. To
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measure simulation speed, we simulate falling down motion
of RHP4B [1], JAXON [18], CHIDORI [19] robots by using
Intel(R) Core(TM) i7-4770S CPU 3.10GHz. Result is shown
in Fig. 2. Blue lines connect all vertices to consider collision
of robots. RHP4B robot has 1322 vertices to collide and 32
joints. The simulation speed is 21.7 kHz. Because we use
1 ms as simulation time step in the following experiments,
the simulation speed is 21.7 times faster than real world.
The time step is limited to less than the fastest controller of
actual robot. In our case, We use 1 ms to simulate position
controller.

Fig. 2. Simulation speed, joint DoF and all vertices to consider collision

B. Search space and objective function

We use polynomial function to search whole-body con-
figuration trajectory and define cost and penalty function to
consider collision, joint torque and contact wrench limita-
tions. Symbols to explain the definition are listed in TABLE.
I - III in advance. We use Lagrange polynomial to express
joint angle trajectory and use control points of the polynomial
as search space. The other choices of polynomial function
include Bezier curve [20] and basic spline [21][22]. We
use Lagrange polynomial because it is easy to implement.
However, there is a risk of divergence to connect large
number of control points (Runge’s phenomenon). In this
paper, we use small number of control points (M=3) and
generated motion does not diverge. It is our future work
to investigate other polynomial for more complex motion.
Definition of joint angle trajectory q is as follows:

q = L(Q;x, T (t)) (1)

s.t.



Q = [q0 · · · qM−1] = [q0 · · · qN−1]T

=

 q00 · · · q0M−1
...

. . .
...

qN−1
0 · · · qN−1

M−1


x = [x0, · · · , xM−1]

T

Definitions of function L and T are as follows:

L(Q;x, t) = [L(q0;x, t) · · ·L(qN−1;x, t)]T (2)

L(qk;x, t) =
∑

i∈[0,M)

qki
∏

j∈[0,M),i ̸=j

t− xj

xi − xj

T (t) =

 0 t ≤ 0
1 t ≥ tm

t/tm − sin(2πt/tm)/2π else

TABLE I
SYMBOLS OF SEARCH

DIM Description
N 1 Total number of joints
M 1 Total number of Lagrange polynomial control points
tm 1 Interpolation duration of joint angle trajectory
t 1 Interpolation time t ∈ [0, tm]
∆t 1 Simulation time step = 1 [ms]
1/S 1 Inverse of score of motion to minimize
P 1 Penalty of motion to minimize
q N Joint angle vector depending on t
τ N Joint torque vector depending on t
w N Joint velocity vector depending on t
p 3 Position vector of root link depending on t
r 3 Rotation vector in Rodrigues’ form depending on t

fl,r 6 Both foot contact wrench. Function of time t

TABLE II
ALL WEIGHT CONSTANT PARAMETERS OF OBJECTIVE OF SEARCH

Constant Value Description
wt 10 Score weight of motion duration
we 1 Score weight of joint torque and velocity
Wt 106 Penalty weight of time when error occurred
Wr 106 Penalty weight of root distance from target
Wf 103 Penalty weight of foot contact wrench
We 106 Penalty weight of joint torque and velocity
Wc 106 Penalty weight of collision

TABLE III
ALL CONSTRAINT CONSTANT PARAMETERS OF SEARCH

Constant Value Description
e [1, 1, 1]T 3d vector, all elements are 1
p− 0.1e [m] Soft max root distance from target
p+ 1e [m] Hard max root distance from target
r− 0.2e [rad] Soft max root slope from target
r+ 0.5πe [rad] Hard max root slope from target
f−
l.r [2eT [kN], 50eT [Nm]]T Soft max foot contact wrench

f+
l.r [4eT [kN], 100eT [Nm]]T Hard max foot contact wrench
τ− 300e [Nm] Soft max joint torque
τ+ 600e [Nm] Hard max joint torque
w− πe [rad/s] Soft max joint velocity
w+ 2πe [rad/s] Hard max joint velocity
P+
c 100 Hard max collision count

The function L expresses Lagrange polynomial which
connects each given joint angles qj , j ∈ [0,M) at a given
time t = xj in N-dimensional space. The time t is larger than
0 and smaller than interpolation duration tm. The function
T increases monotonically from T (0) = 0 to T (tm) = 1.
The velocity and acceleration are zero if t = 0 or t = tm.
Search space includes q0 · · · qM−1 and tm. Definition of
score function S is as follows:

1/S = wttm + we

√∑ ||τ ||2
N

∆t+ we

√∑ ||w||2
N

∆t (3)

First term means fast motion is better (interpolation du-
ration tm is small). Second term means small joint torque
is better. τ is joint torque vector of all joints and N is
total number of joints. Third term means small joint velocity
is better. w is joint velocity vector of all joints. wt, we

are constant values to weight scores. Definition of penalty
function is as follows:

P = WtPt +WrPr +WfPf +WePe +WcPc (4)
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s.t.


Pt = tm − t
Pr = B(p,p−,p+) +B(r, r−, r+)
Pf = B(fl,f

−
l ,f+

l ) +B(fr,f
−
r ,f+

r )
Pe = B(τ , τ−, τ+) +B(w,w−,w+)
Pc = Total Number of Collision

Pt imposes penalty on simulation time. t is simulation
time which is equal to tm if simulated motion is valid
and is motion invalid() in Algorithm 2 always returns false.
If simulated motion is invalid, t becomes smaller than tm
and Pt becomes positive value (penalty). The conditions of
invalid simulation are as follows:

p > p+ r > r+ fl,r > f+
l,r (5)

τ > τ+ w > w+ Pc > P+
c

Pr imposes penalty on difference between desired root
link coordinates and simulated root link coordinates in the
end of motion (goal condition). The difference considers hard
maximum value p+, r+ and soft maximum value p−, r− by
using following barrier function:

B(v,v−,v+) =
∑

i∈[0,V )

B(vi, v
−
i , v

+
i ) (6)

s.t. v = [v0 · · · vV−1],v
± = [v±0 · · · v±V−1]

B(v, v−, v+) =

{
∥(v − v−)/(v+ − v−)∥2 v > v−

0 else

The barrier function B becomes 0 if first argument is
smaller than soft max (second argument) and becomes 1
if first argument is equal to hard max (third argument). If
first argument is larger than hard max, simulation is stopped
and Pt penalty is considered. Similarly, Pf imposes penalty
on foot contact force f and moment m and Pe imposes
penalty on joint torque τ and velocity w by using the same
barrier function B. Pc imposes penalty on self collision
and environment collision between environment and a set
of links. In the following experiments, the set of links
include head, torso and both arms. Pc is total number of
collision while simulation. Wt,r,f,e,c are constant values to
weight each penalty. Concrete values used in the following
experiments are listed in TABLE II, III.

C. Test of knee-contact motion generation

We solve following problem:

minimizeq1,tm 1/S + P (7)

Joint angle trajectory is defined as follows (Eq (1)):

q = L([q0, q1, q2]; [0, tm/2, tm], T (t)) (8)

1) Sitting down: We fix initial posture q0 and final posture
q2 as shown in lower side of Fig. 11 (a). Search parameters
are q1 and tm. Initial guess of the parameters are uniform
random in q1 ∈ RoM (Range of Motion) of all joints and
tm ∈ [1, 5] seconds. Additionally, we filter the joint angles
to be symmetric posture.

2) Standing up: We use almost the same conditions as
sitting down except for swapping initial postures for final
postures as shown in lower side of Fig. 11 (c).
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Fig. 5. Knee zoom snapshot of generated motion.

3) Rotating clockwise with knee contact: Initial posture
and final posture are shown in lower side of Fig. 11 (b).
The final posture is rotated 0.5 radian clockwise from the
initial posture. The symmetric filter used for sitting down
and standing up is not used for this experiment. Fig. 5 zooms
knee links while rotating. We can confirm that complex
contact states appear in the motion; First, left knee link
moves upward. Second, right knee contact rotates keeping
left knee link floating. Last, left knee link moves downward
to ground and right knee link moves upward instead.

4) Computation time and Accuracy: We use 50 threads
parallel computation in 5 hours. Total number of genes
in each generation is 1024. Each gene is evaluated by 10
seconds simulation. The simulation speed is about 20 times
faster than real world. Therefore, each generation evolves
after (1024 genes × 10 seconds) / (20 kHz × 50 threads)
≈ 10 seconds. Fig. 3 shows transition of Objective =
1/S+P . We can confirm that all objectives become smaller
than hard maximum penalty order (larger than 1000) and
feasible motions are obtained. Although we search in 5
hours, objective functions of standing up and sitting down
motions become almost constant after 1 hours. Fig. 4 shows
simulation accuracy according to simulation time step. We
expect a simulation result with small time step 10−5 [s] to
be accurate, and discrepancy between the accurate result and
a result with larger time step is used as accuracy evaluation
of the larger time step. Similar evaluation can be found in
[23]. The discrepancy we used is root mean square of time
integration of difference of joint angles and root link attitude.
Simulated results are similar if time step is smaller than 1
milliseconds. If time step is larger than 2 milliseconds, result
becomes visibly different.
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III. EXPERIMENTS ON KNEE-CONTACT MOTIONS

There exist large gaps between simulated motion and
actual result due to error of model parameters. However,
we confirmed that it was possible to achieve knee-contact
motion due to large support region. Snapshots of all motions
are shown in Fig. 11. Further, we compare actual results and
simulated results to check the gaps in this section.

A. Sitting down
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Fig. 6. Root link attitude in world frame while sitting down motion
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Fig. 7. Left knee joint angles while sitting down motion

Upper side of Fig. 11 (a) shows actual results. Fig.6
compares actual root link attitude and simulated one. Actual
results largely vibrate after sitting. By checking movie,
timing of knee link contact seems to be fast and both feet
temporary lift off. The feet lifting appears in simulated result
although the lifting is smaller than real. We should check
difference of mass parameters and contact points between
actual and simulation world to reduce the gap. Fig. 7 shows

target joint angle, measured one and difference between them
(tracking error) of left knee joint. The tracking error reflects
joint torque. We can confirm that actual and simulated results
seem to be similar. However, the actual tracking error is over
30% larger than simulated result. We should check position
controller to reduce the gap.

B. Standing up
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Fig. 8. 3axis force sensor of left foot while sitting down motion
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Fig. 9. Left knee joint angles while standing up motion

Upper side of Fig. 11 (c) shows actual results. Fig. 8 shows
contact force of left foot. ’z’ means vertical force. The force
is 500 N after standing and 300 N while sitting. Therefore,
about 200 N is applied to knee contact. Fig. 9 shows joint
angles, measured ones and difference between them (tracking
error) of left knee joint. In comparison with sitting down
motion, the tracking error is 2 times larger because standing
up motion needs more joint torque to sustain massive weight
of humanoid robot. The reason why standing up motion is
not reversed trajectory of sitting down motion is that our
simulator considers dumping force for collision involving
energy loss and the reversed trajectory is infeasible.

C. Rotating clockwise with knee contact
Upper side of Fig. 11 (b) shows actual results. Fig. 10

shows root link attitude. Actual attitude is estimated from
acceleration sensor and gyro sensor by using Kalman filter,
and simulated attitude is obtained by forward dynamics cal-
culation. Because actual robot is not equipped with magnetic
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sensor, the estimated yaw rotation it not correct. However,
we can confirm that actual robot largely rotates as simulated
robot.
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Fig. 10. Root link attitude in world frame while rotating clockwise

IV. SUMMARY AND CONCLUSION

To investigate whole-body multi-contact behavior, we pre-
liminarily research on knee-contact motion and show three
experiments: Standing up from knee contact to foot contact,
sitting down from foot contact to knee contact and rotating
keeping knee link contact with ground. To generate knee-
contact motion, we use goal-oriented simulation-based evo-
lutionary search algorithm which does not specify detailed
contact conditions to generate complex contact transition.
Actually, generated knee-contact motions include complex
contact states such as rotating around knee contact without
given contact states. Further, we confirm that the generated
motions can be achieved by actual life-size humanoid robot
RHP4B. The contribution of this paper is to gain a foothold
of whole-body multi-contact behavior by achieving knee-
contact motions. We conclude that our approach will become
increasingly important as robust robot systems enabling
whole-body multi-contact behavior are developed more.

A. Future works
To improve performance of our approach, we have to

overcome two issues. One is computational time. It took
over 1 hour to generate knee-contact motions. However,
our approach is beneficial to generate motion primitive as
shown in this paper. Further, we try to generate not only
whole-body trajectory but also controller with feedback to
be used in wide range of applications. Actually, a paper
about a walk controller will appear in IROS 2018 [19].
The other one is error of model parameters between actual
and simulated world. We expand simulation-based model
identification approach [24], and submit a paper as [25]. The
expansion enables to achieve more dynamical and unstable
motions.
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