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Abstract— This paper presents a multi-contact approach
to generalized humanoid fall mitigation planning that uni-
fies inertial shaping, protective stepping, and hand contact
strategies. The planner optimizes both the contact sequence
and the robot state trajectories. A high-level tree search is
conducted to iteratively grow a contact transition tree. At each
edge of the tree, trajectory optimization is used to calculate
robot stabilization trajectories that produce the desired contact
transition while minimizing kinetic energy. Also, at each node
of the tree, the optimizer attempts to find a self-motion (inertial
shaping movement) to eliminate kinetic energy. This paper
also presents an efficient and effective method to generate
initial seeds to facilitate trajectory optimization. Experiments
demonstrate show that our proposed algorithm can generate
complex stabilization strategies for a simulated planar robot
under varying initial pushes and environment shapes.

I. INTRODUCTION

Humanoid robots have the apparent advantage of being
able to navigate using legs and arms to traverse terrains
which are demanding for wheeled robots. However, the
intrinsic instability of bipedal walking makes them much
harder to control than wheeled robots, and falls can cause
costly failures. As a result, fall mitigation is a topic of active
research. Prior approaches have either used the internal joints
of the robot to resist disturbances (e.g. ankle strategy, hip
strategy [1], [2], or inertial shaping [3]) or external contacts
(e.g., protective stepping [4], knee contact [5], hand contact
[6], [7]). However, these strategies have been considered in
isolation and there have been limited attempts to unify mul-
tiple strategies into a single fall mitigation system. Existing
unified strategies use heuristic decision functions for mode
switching [8], [9], and machine learning-based methods for
fall planning [10], [11]. Past approaches can only handle a
limited range of conditions, due to oversimplified assump-
tions of robot dynamics and contact, or a restrictive number
of protective strategies.

In this paper we consider the following question: what
is the optimal strategy by which a robot should mitigate
an impending fall? Small pushes can be easily resisted by
inertial shaping, while larger pushes may require one or
more protective steps, and possibly even hand contact. Our
hypothesis is that robot should choose the strategy that yields
the fastest decrease in kinetic energy.
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Fig. 1. A representative contact transition tree for fall mitigation
with initial kinetic energy 55 J where the robot stabilizes itself
with protective stepping, hand contact and inertial shaping. Dots
indicate root node (yellow), terminal node (blue), connectable nodes
(green), and unconnectable or unstabilized nodes (red). Dashed
curves denote self-motion (inertial shaping) trajectories. Note that
intermediate configurations of transition motions are also shown.
Orange curves indicates the solution, with contact sequence RF →
RF/LF → RF/LF/LH.

In order to study this hypothesis, we develop a planning
method that simultaneously generates the contact sequence
and optimized whole-body trajectories to achieve a stabiliz-
ing multi-contact trajectory. With the assumption of a planar
robot model in Sagittal plane, the proposed method obeys
dynamics, collision impact mapping, and contact feasibility
constraints, and can generate a diverse number of fall miti-
gation strategies, including flat ground and vertical wall, and
allows the adoption of hand contact for fall stabilization.
Our algorithm iteratively constructs a contact transition tree,
rooted at the robot’s disturbed initial state, where each edge
denotes a contact transition connected by a feasible dynamic
trajectory. It proceeds by attempting to optimize a self-
stabilizing motion at the root node, without changing contact.
If self-stabilization succeeds, then the algorithm is done. If
this fails, our algorithm expands to its adjacent contact modes
and then attempts to optimize robot transition trajectories to
reach these contact modes. Search proceeds via a minimum
kinetic energy heuristic, and continues until a self-stabilizing
motion can be found at some node. The path from the root
to this node yields a multi-contact trajectory that stabilizes
the robot. Fig. 1 illustrates one representative diagram of a
contact transition tree.

For trajectory optimization we use the direct collocation
method to simultaneously optimize robot configuration, ve-
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locity, control and contact force [12]. We propose a seed
initialization algorithm that calculates an initial guess for
the optimizer. This strategy initializes the intermediate robot
states with an evenly evaluation of the computed parabolic
splines matching initial robot state and an optimized feasible
goal configuration, and computes the control and contact
forces with a pseudo-inverse method to minimize the dynam-
ics constraint violation. Experiments with a simulated planar
robot demonstrate that our proposed algorithm automatically
generates unified mitigation strategies, such as inertial shap-
ing, protective stepping and hand contact, to stabilize varying
initial pushes and environment shapes.

II. RELATED WORK

The problem of balancing a biped or humanoid in response
to external disturbance has been an active topic of research
for some time [5], [4]. Strategies proposed to address this
topic can be classified into two main categories: fixed contact
and contact modification. Fixed contact strategies aim to
recover the robot purely through joint effort to regulate linear
and angular momentum, all while maintaining the current
contact state. Two representatives are the ankle strategy and
hip strategy [1][2]. For larger disturbances it is impossible to
recover to a stationary state using joint torques alone. Contact
modification strategies reduce momentum by making contact
at the robot extremities, which transfers kinetic energy from
the robot into the environment. Examples of this type of
strategy include protective stepping [13], hand contact [14]
[15], knee contact [16], tripod posture [17], and contact with
accessories such as a backpack [18] and walking sticks [19].

Contact modification strategies may also be divided into
push recovery and fall mitigation approaches, which differ
in whether the robot recovers to a normal operational state
after the disturbance. Push recovery assumes a moderate
external disturbance and the robot is assumed capable of reg-
ulating its locomotion to decrease the increased momentum.
Capture point stepping is a commonly used strategy which
aims to dampen the robot centroidal velocity by making
additional footstep(s) [20]. This strategy employs an inverted
pendulum model with a massless telescopic leg and produces
analytic information of the capture steps. This strategy has
been extended on omnidirectional disturbance [21], uneven
terrain stepping [22] and model validation analysis [23].
Fall mitigation deals with large disturbances such that an
unavoidable fall has been triggered, and plans the contact
and fall trajectories of the robot to reduce the robot damage
from collision impulse. Strategies focusing on the impact
reduction in pre-impact stage adopt the damage optimization
with simplified model using indirect Pontryagins minimum
principle [24] and direct collocation method [16], multi-
contact planning for whole-body trajectory [10] and pos-
ture reshaping to avoid configuration singularity [25]. Other
strategies focus on the post-impact stabilization with active
compliance adjustment [26] [27] and the optimization of both
pre/post-impact stage to reduce damage from impulse and
potential contact slippage [6] [7]. Planning fall mitigation
motions is generally more computationally challenging due

to greater diversity of initial conditions, a wider range of
possible contact sequences, and the difficulty of devising
simplified dynamic models that are suitable to use when the
robot is far from nominal operating conditions.

Despite the existence of various disturbance recovery
strategies, it still remains unclear which strategy or combina-
tion of strategies should be adopted to stabilize a humanoid
if an arbitrary pushed is imposed. Stephens determines the
decision boundary between strategies using a simplified
LIPM model [1]. Our proposed method unifies both fixed
contact and contact modification strategies, and can also
devise novel contact sequences. It does so by planning
trajectories from the initial state to minimize kinetic energy
via a multi-contact transition tree approach. This approach
is related to other multi-contact planning algorithms, such as
manipulation planning in contact configuration space [28],
multi-modal motion planning for legged robots [29], and
robot whole-body transition synthesis using motion capture
dataset [30]. However, these approaches only address quasi-
static systems and feasible planning. Our approach is based
on a planar dynamic model of the robot and uses trajectory
optimization to generate state-space paths.

III. METHOD

A. Contact Transition Tree

Given an initial robot state, initial contact mode, and
environment geometry, we wish to generate a joint space
trajectory and contact sequence to stabilize to a stationary
(zero-velocity) state. Our method integrates a high-level tree
search, to explore contact sequences, with trajectory opti-
mization, to plan connecting trajectories and self-stabilization
trajectories.

Let x = (q, q̇) denote a robot state and σ denote a contact
mode, with x0 and σ0 the start state and mode. A state
consists of the robot’s generalized configuration q ∈ Rn
and velocity q̇ ∈ Rn. A contact mode indicates the contact
active/inactive status, and is a vector σ ∈ {0, 1}l×1 where l
is the number of contact extremities allowable on the robot.
σi = 0 indicates that the i’th extremity has no contact, while
σi = 1 indicates contact.

A feasible fixed-contact trajectory must respect contact
constraints of its mode, as well as dynamic constraints, fric-
tion limits, torque limits, and joint limits. These constraints
will be described in Sec. III-C.1. Let the kinetic energy
of a state be Ek(x) = 1

2 q̇
TD(q)q̇. We define a stationary

state as one in which Ek(x) is sufficiently small. Our goal
is to produce a multi-contact trajectory sequence of modes
σ0, . . . ,σN and a continuous sequence of N + 1 feasible
trajectories starting at x0 and ending at xN . N is not fixed,
and there is no restriction on the terminal contact mode.

For transitions σi → σi+1 that add a new contact, there is
additionally an impact mapping condition that must be met
at the transition to account for the instantaneous change in
velocity. In this contact addition case, the pre-impact kinetic
energy is the cost function to be minimized.

To build a feasible multi-contact trajectory, our method
incrementally builds a contact transition tree T , rooted at
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the initial robot state’s mode, and iteratively grows its edges
to the most promising stabilizable nodes until a terminal self-
stabilization has been achieved. Each tree node di contains
three attributes:
• Contact mode σ(di)
• Robot state x(di).
• Self-motion trajectory yself(di).

The self-motion trajectory yself(di), also denoted by yi, is a
feasible fixed-contact trajectory at σ(di) starting at x(di).
In other words, it is an inertial shaping trajectory.

For each edge ei→j from di to dj , the nodes may differ by
exactly one limb in contact. Each edge also stores a transition
trajectory yij starting at x(di) and terminating in x(dj). A
transition trajectory must satisfy the constraints of σi. If the
mode switch σi → σj removes a contact, then the final state
must satisfy the dynamic constraints of σj , specifically, that
there are valid forces at the contacts active in σj . If the mode
switch adds a contact, then the final state must satisfy the
kinematic contact conditions of σj

B. Contact Transition Tree Search and Expansion

The following search procedure is used to grow T . Let F
denote the frontier nodes, which is implemented as a priority
queue sorted by increasing kinetic energy.

1) The node with lowest kinetic energy is extracted from
F , and a trajectory optimization will be conducted to

Algorithm 1: Contact transition tree search
Input : Initial state x0, mode σ0, environment map
Output: Mode sequence: (σ0 → σ1 → · · · → σN )

Trajectories: (y0,1 → · · · → yN−1,N → yN )
1 d0 ←Node(x0,σ0)
2 T ← d0, F ← {d0}
3 while |F| > 0 do
4 di ← Pop(F)
5 yi ← opt self motion(di)
6 if yi 6= nil and Ek(End(yi)) < εEk

then
7 yself(di)← yi
8 Retrieve path from d0 to di in T
9 return Modes (σ0 → · · · → σi)

10 Paths (y0,1 → · · · → yi−1,i → yi)
11 end
12 for σj ∈ AdjacentModes(σ(di)) do
13 yi,j = opt transition motion(di, σj)
14 if yi,j 6= nil then
15 xj ← End(yi,j)
16 If |σj | > |σi|, xj ← ImpactMap(xj ,σj)
17 dj ← Node(xj ,σj)
18 Add dj to T as a child of di
19 Store yi,j with ei→j
20 Add di to F with priority Ek(End(yi,j))
21 end
22 end
23 end
24 return no solution found

calculate yi.
2) If a stationary endpoint is found, then we are done.
3) Otherwise, the algorithm continues to expand to neigh-

boring contact modes by attempting to find feasible
trajectories to those modes.

4) Each successful connection to a neighbor is added as a
new edge in T , and each neighboring node is added to
F .

Specifically, our algorithm uses a greedy approach in
which each trajectory optimization attempts to minimize
the kinetic energy of the endpoint. This approach tries to
eliminate kinetic energy from the initial robot state as quickly
as possible, which limits the amount of search needed to find
a solution.

Algorithm 1 illustrates the details of tree search and expan-
sion procedure. Lines 5–11 attempt to stop the robot at the
current contact mode via a self motion. If the optimization
succeeds and the kinetic energy at the end point is within a
small tolerance εEk

, we are done. The result traces back from
this leaf node to the root node to extract the solution contact
sequence and single-contact trajectory sequence. Lines 12-22
validate the connectivity to child nodes using optimization.
If no further feasible paths can be found (Line 24), the
algorithm terminates with failure.

The main computational tasks are undertaken by two
subroutines:
• opt self motion optimizes a robot stabilization tra-

jectory at the contact mode σ of node di.
• opt transition motion optimizes a transition tra-

jectory from node di to node dchild.
These will be described in more detail below. The following
minor subroutines are also used:
• Pop takes out the node with the minimum kinetic energy

among other nodes in the Frontier F .
• Node creates a node at a given robot state and contact

mode.
• End returns the robot state at the end of a trajectory.
• AdjacentModes produces the list of neighbouring con-

tact modes that differ from σ by exactly one change
of contact. Fig. 2 illustrates a representative node ex-
pansion example where each hand/foot contact can be

Fig. 2. Illustrating the mode adjacency diagram. From two-foot contact
mode LF/RF (center), the robot can switch to one-foot modes LF and RF
(left) and two three-contact modes LF/RF/LH and LF/RF/RH (right).
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modified to produce 4 adjacent nodes.
• ImpactMap calculates the post-impact robot state result-

ing from impact mapping as described in Sec. III-E.

C. Trajectory Optimization: Stabilization and Transition

Trajectory optimization is central to our method, and
we use a collocation method that uses a high-accuracy
spline representation [12]. As an objective function we
minimize the kinetic energy at the end state of the tra-
jectory. We also develop a custom trajectory initializa-
tion that works well in practice. Both opt self motion
and opt transition motion, use the same underlying
method with only small modifications.

1) Constraints: The standard equation of motion for con-
strained dynamical system is

D(q)q̈ + C(q, q̇) +G(q) = J(q)Tλ+Bu (1)
where D(q) ∈ Rn×n is the inertia matrix. C(q, q̇) ∈ Rn×1
is the centrifugal and coriolis matrix. G(q) ∈ Rn×1 is the
generalized gravitional matrix. u ∈ Rm×1 is the joint torque
vector and B ∈ Rn×m is the input matrix. λ ∈ Rl×1 be the
contact force vector. J(q) ∈ Rl×n is the Jacobian matrix of
global contact positions with respect to q.

This constraint must be met for all states along the trajec-
tory. We also require the following feasibility constraints.
• Complementarity constraints: The elementwise product

between force λj at the j’th contact and the associated
relative distance φj(q) has to be 0:

λj · φ(q)j = 0,∀j ∈ [1, ..., l] . (2)
But since the contact mode is known during optimiza-
tion, we enforce stricter constraints on contact force λi
and relative distance. Let Diag(·) generate a diagonal
matrix with the vector · on its diagonal and let ¬ denote
logical negation. Then the constraint is rewritten as

Diag(¬σ)λ = 0,

Diag(σ)φ(q) = 0, Diag(¬σ)φ(q) > εct.
(3)

The parameter εct enforces a minimum clearance for
non-contacting limbs. Note that εct needs to be set to 0
if the transition is to remove a certain contact.

• Contact holonomic constraints: In addition to contact
position constraints, we also enforce contact velocities
to be 0 using:

Diag(σ)J(q)q̇ = 0. (4)
• Contact force feasibility constraints: The contact force

between the robot and the environment follows the
Coulomb friction model, and the friction cone con-
straints are written as

λjn ≥ 0, µ2λ2jn ≥ λ2jt (5)
where λjn and λjt respectively denote the contact force
in the normal and tangential direction of contact j.

• Joint limits, velocity limits, and torque limits:
xmin ≤ x ≤ xmax
umin ≤ u ≤ umax

(6)

2) Direct collocation: The variables to be optimized are
the time duration T and trajectories of the robot state,

control and contact force. After the transcription of these
continuous trajectories at Nd equally distributed knot points
with timestep h = T

Nd−1 , we formulate this trajectory
optimization into a non-linear programming (NLP) problem.
The inputs to the NLP are timestep h, discretized robot
state (x1, ...,xNd

), control (u1, ...,uNd
) and contact force

(λ1, ...,λNd
).

Due to second-order nature of the robot dynamical sys-
tem and the holonomic constraints on contact position and
velocity, using classic first-order Euler integration to update
the robot state tends to cause numerical difficulties. This
drawback can be avoided by approximating the robot state
and control/contact force trajectories as implicit cubic splines
and piecewise linear functions, respectively. A third-order
integration accuracy O(h3) has been reported with this spline
choice [12]. The construction of implicit cubic splines is
associated with the system kinematics and dynamics. For
a representative position variable qi, its cubic spline path
within a timestep can be expressed

qi(s) = aps
3 + bps

2 + cps+ dp, s ∈ [0, 1] (7)

The position qi(s) and its first time derivative dqi(s)
dt should

match the robot state at both edges (xi,xi+1). These match-
ing conditions solve the four unknowns in qi(s) and any
intermediate point can be then interpolated. However, the
same methodology cannot be used to calculate the cubic
spline coefficients of the velocity variable q̇i(s) since the
first order derivative of q̇i(s), acceleration, is not a variable
to be optimized. As a result, we have to adopt a different
approach to get its cubic spline.

At sequential knots, states (xi,xi+1), controls (ui,ui+1)
and contact forces (λi,λi+1) are optimization variables.
Instead of enforcing the dynamics constraint (1) inside the
optimization solver, we directly make use of this constraint
to calculate the acceleration determined under the current set
of robot state, control and contact force. With accelerations
now available at both knots, the cubic spline coefficients of
q̇i(s) can be computed.

The guaranteed satisfaction of the dynamics constraints
at knot points enable us to add a collocation point in the
middle position (s = 0.5) to further decrease the dynamics
violation within this interval. With the approximation of
the control and contact force to be linear function, their
interpolated value at the mid-point is the average of the
edge values umid = ui+ui+1

2 , λmid = λi+λi+1

2 . Together
with the interpolated robot position qmid, velocity q̇mid and
acceleration q̈mid, a dynamics constraint is imposed at this
collocation point

D(qmid)q̈mid + C(qmid, q̇mid) +G(qmid) =

J(qmid)
Tλmid +Bumid

(8)

By matching the cubic spline to the real trajectory at both
knots and collocation, the dynamics constraint violation
along this spline is significantly reduced. To get rid of the
difficulty in formulating the undifferentiable self-collision
avoidance constraint in 3 dimension environment, we assume
at this stage the robot locomotion is in its sagittal plane. In

36



addition, we constrain the relative distances of robot’s inter-
nal joints to be always strictly away from the environmental
features such that contact can only be made at robot’s hands
and feet.

The overall NLP that is solved is
minimize

h,x1,...,xNd
,u1,...,uNd

,λ1,...,λNd

Ek(xNd
)

subject to (1)− (8)
(9)

which we solve using the SNOPT library [31].

D. Optimal Seed Initialization
An initial guess is needed for the NLP solver to find a

feasible and high-quality solution. This is a nontrivial chal-
lenge. Our algorithm actually uses multiple initial guesses of
increasing duration. For each duration, a smooth parabolic
spline that obeys the initial and terminal constraints is
generated. We try solving the NLP when seeded from each
of these initial guesses, and terminate when the first feasible
solution is found.

For a given duration guess Ti, the initial guess satisfies the
kinematic transition constraint and minimizes the violation
of the dynamics constraint at each knot point. This procedure
is as follows:

1) Take x0 = [qT0 , q̇
T
0 ]T as a starting point and compute a

reference goal configuration qref by assuming that q̇0
linearly decreases to zero at Ti so qref = q0 + q̇0Ti +
1
2 q̈refT

2
i where q̈ref = − q̇0

Ti
.

2) Project qref back to the constraint manifold to get the
goal configuration qg and construct a parabolic curve
with duration Ti starting at q0 and ending at qg , with
initial velocity q̇0.

3) Discretize the parabolic spline into n segments and
interpolate the configuration, velocity and acceleration
at edges (knots) of the segments.

4) For each knot point, compute the left hand side of
dynamics equation (1). Solve for u and λ in least
squares fashion by multiplying the l.h.s. by the pseudo-
inverse of

[
B, Jσ(q)T

]
where Jσ is the Jacobian matrix

of active contacts in the post-impact contact mode σ.
The trajectory duration Ti directly affects the acceleration

of the parabolic curve. Smaller values of Ti generally yield
larger accelerations, and hence more extreme control and
contact forces. We uniformly explore a range of durations
T bounded between [Tmin, Tmax], divided uniformly into
Ntot points. Our optimizer explores these options via brute
force under increasing duration Ti until a feasible solution
has been found or all options are exhausted.

E. Impact mapping
Impact happens when a contact is added, and we assume

that it is inelastic and instantaneously changes the pre-
impact velocities q̇− to post-impact velocities q̇+ through an
infinitesimal time duration. q̇+ must satisfy the goal contact
mode holonomic constraint, so we can calculate the impulse
λ̄ and post-impact state by solving the linear equation [32].[

D(q) −Jσ(q)T

Jσ(q) 0

] [
q̇+

λ̄

]
=

[
D(q)q̇−

0.

]
(10)

TABLE I
PARAMETERS USED IN EXPERIMENTS

System Parameters Optimization Coefficients Tolerances

n 13 Tmin 0.25 s εEk
0.1 J

m 10 Tmax 3.5 s εct 0.025 m
l 12 Ntot 40
µ 0.35 Nd 8

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of the proposed method with
a simulated planar model of the HRP-2 robot under varying
initial disturbed robot states and environment shapes. All
experiments are conducted on a 64-bit Intel Quad-Core i7
2.50GHz workstation with 8GB RAM. The computational
time in solving the NLP takes around 3 ∼ 5 min given
a suitable initial seed. Robot parameters and optimization
coefficients used in our experiment are listed in Tab. I.

A. Multi-Contact Fall Mitigation

This subsection demonstrates the capability of the pro-
posed algorithm to generate complex multi-contact stabiliza-
tion strategies in different environments.

Fig. 3 shows the contact transition tree produced by our
algorithm with a large 85 J disturbance on flat ground. There
is no stabilizing self-motion trajectory with either 0, 1, or 2
contact switches, so the tree is expanded until it finds a so-
lution at depth 3. The optimal contact sequence for this case
is: protective stepping + two-hand contact + inertial shaping,
specifically RF→RF/LF→RF/LF/LH→RF/LF/LH/RH.

Fig. 4 shows the contact transition tree produced for the
robot pushed toward a vertical wall with an initial two-
foot contact mode. There are no self-motion trajectories at
depth 0, but it finds a solution using hand contact, yielding
a contact sequence LF/RF→LF/RF/LH.

B. Change of Strategy with Increasing Initial Energy

This subsection demonstrates how our algorithm can ex-
plore the change in fall mitigation strategy necessary to
handle pushes of increasing severity. We choose 8 initial
states whose kinetic energies increase in an evenly spaced
pattern all the way up to the extreme case.

1) Ek(x0) = 10 J, 20 J: The robot is able to dampen
its momentum with inertial shaping, so its contact
transition tree has only a single node (Fig. 5).

2) Ek(x0) = 30 J, 40 J, 50 J: Inertial shaping cannot
stabilize the robot, and protective stepping is needed
(Fig. 6).

3) Ek(x0) = 60 J, 70 J, 80 J: Neither inertial shaping nor
protective stepping are sufficient. For these cases, our
algorithm explores until depth 2, where hand contact
enables successful stabilization. The contact transition
trees for these cases are similar to Fig. 1.

Fig. 7 lists the kinetic energy trajectories for all eight cases.
All KE at ending time have been reduced to zero.

In addition, we further test the proposed algorithm in one
extreme case (Ek(x0) >150 J). When the initial Ek(x0) is
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90.18 J

134.20 J

62.78 J

85 J

194. 24 J

210.98 J

8.87 J

45.56 J

16.02 J

<0.1 J

Fig. 3. Contact transition tree on flat ground, starting from initial kinetic energy 85 J. Solution takes a protective step, makes ground contact with both
hands and uses inertia shaping to achieve a terminal stabilization.

32 J

11.72 J

23.11 J

< 0.1 J

Fig. 4. Contact transition tree with vertical wall, yielding a hand contact
strategy.

extremely large, the planning of optimal contact sequence
will fail to plan the stabilization strategies. This failure is
due to constraints on the joint torque bounds and contact
force feasibility. When the joint torque is not larger enough
to maintain the contact holonomic constraints on position and
velocity, the supportive normal contact force will need to be
negative to drag the contact point on the contact surface. This
negative contact force violates its feasibility constraints, thus
preventing the optimal solution being computed.

V. CONCLUSION

Our multi-contact planner for humanoid fall mitigation
unifies inertial shaping, protective stepping, and hand contact
strategies. The planner optimizes both the contact sequence
and the robot state trajectories using a contact transition

10 J
<0.1 J

Fig. 5. Inertial shaping with initial kinetic energy 10 J.

77.73 J

118.63 J

40.39 J

30 J

<0.1 J

Fig. 6. Protective stepping with initial kinetic energy 30 J.

tree search. A greedy minimization of kinetic energy tends
to find solutions with few contact changes and very little
backtracking. An efficient method to generate initial seeds for
trajectory optimization facilitates convergence. Experiments
demonstrate show that our proposed algorithm can generate
complex stabilization strategies for a simulated humanoid
under varying initial pushes and environment shapes.

Despite these promising results, the algorithm is currently
not suitable for real-time use. Each self or transition opti-
mization takes approximate 3 ∼ 5 min provided promising
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Fig. 7. Kinetic energy trajectories with initial KE varying from 10 J to
80 J

initial seeds. However, when unsatisfactory seeds are gen-
erated, the optimization solver will suffer from numerical
difficulties and considerably large computation time will be
taken. To address this, in the future we hope to use our
optimizer generate large databases of optimal trajectories,
and then train a machine learning model to rapidly predict the
fall mitigation strategy. Moreover, the current robot model is
implemented in the HRP-2 robot’s 2D sagittal plane, and
we plan in the near future to implement a 3D version.
Finally, although greedy energy minimization works well for
relatively simple environments, more complex environments
may require increases of kinetic energy in order to stabilize
the robot (for example, the robot may need to jump over a
large gap).
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