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Abstract— In the context of humanoid skill learning, move-
ment primitives have gained much attention because of their
compact representation and convenient combination with a
myriad of optimization approaches. Among them, a well-known
scheme is to use Dynamic Movement Primitives (DMPs) with
reinforcement learning (RL) algorithms. While various remark-
able results have been reported, skill learning with physical
constraints has not been sufficiently investigated. For example,
when RL is employed to optimize the robot joint trajectories,
the exploration noise could drive the resulting trajectory out
of the joint limits. In this paper, we focus on robot skill
learning characterized by joint limit avoidance, by introducing
the novel Constrained Dynamic Movement Primitives (CDMPs).
By controlling a set of transformed states (called exogenous
states) instead of the original DMPs states, CDMPs are capable
of maintaining the joint trajectories within the safety limits.
We validate CDMPs on the humanoid robot iCub, showing the
applicability of our approach.

I. INTRODUCTION

In recent years, movement primitives as a trajectory
parametrization technique remain one of the most important
research topics in the area of robot skill learning. Various
types of movement primitives have been developed and their
development is still in progress actively [1]. With the help of
movement primitives, robot skills can be encoded robustly
and compactly by organizing the building blocks in parallel
and/or in series. The required time and costs can usually
be reduced by programing the robot from human demon-
stration. Actually, numerous state-of-the-art robot learning
success cases rely on the usage of movement primitives. For
example, in the context of imitation learning, robots can learn
hard-to-engineer skills such as hitting a ball by extracting
the relevant motion patterns from human demonstrations
[2]. In addition, to provide robots with a new level of
autonomy and flexibility, movement primitives are preferably
employed in reinforcement learning (RL) algorithms since
they can considerably alleviate the problem of the curse
of dimensionality. Especially, the combination of Dynamic
Movement Primitives (DMPs) [3] with RL algorithms has
already endowed robots with various sophisticated skills such
as table tennis [4], ball-in-the-cup [5], and dart throwing [6].

Despite of the remarkable achievements accomplished by
optimizing the DMPs parameters with RL algorithms, skill
learning with physical constraints has not been sufficiently
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Fig. 1: Illustration of the iCub joints used in our experiments.

investigated yet. This problem shall not be overlooked since
multiple causes can give rise to joint limit violation. For
example, when applying RL-based optimization approach
to DMPs, random exploratory noise is added to the DMPs
parameters in search of the optimal policy. Therefore, the
generated trajectory could possibly induce unexpected over-
shoots or unbounded final goal position as a result of shape
and goal learning. Similar concern also exists when the
robot’s trajectory needs to be adjusted in order to meet the
additional requirements arising over the course of some task,
e.g. obstacle avoidance. The typical treatment of obstacle
avoidance for DMPs, in fact, is to add the coupling terms
derived from the properly tuned potential field [7]. If the
potential field has unduly strong intensity, the DMPs states
would be driven out of the allowable limit range and thus
provide the robot with unfeasible reference trajectories.

In general, joint limit avoidance is a widely studied
topic in robotics. Several methods have been proposed in
path planning, including damped least-squares [8], weighted
least-norm solutions [9], and Lyapunov-based methods [10],
among others. A limitation of path planning approaches lies
in the fact that the generated safe trajectories are the desired
ones, which are not guaranteed to be accurately tracked by
the system. In the case of redundant manipulators, stack-
of-tasks methods can be applied by introducing a lower-
priority objective enforcing joint limits avoidance in the null
space of higher-level tasks [11]. However, the resulting joint
trajectories are not guaranteed to be safe. Gradient projection
techniques have also been proposed, whose working prin-
ciple is to define a function maximizing joint margin and
project its gradient onto the null space projection matrix
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Fig. 2: Illustration of the principle of CDMPs - a joint limit avoidance scheme for DMPs. The joint space demonstration
trajectory q is first transformed into the exogenous state ξ. Subsequently, the exploration noises for both shape and goal
learning will be added to ξ instead. Also, potential filed based obstacle avoidance strategy will modify the dynamics of the
trajectory by adding the coupling term in the transformed space. Finally, the resulting joint trajectory with guaranteed joint
limit avoidance property will be obtained using the inverse transformation.

of the Jacobian [12]. This allows to drive the joints away
from limits without moving the end effector, but it does not
guarantee successful minimization for each joint and requires
tuning additional parameters. Other approaches, introduced
in whole-body humanoid motion control, are: 1) to add
virtual springs or spring-dampers near joint limits [13], and
2) to introduce an inequality constraint for each joint range in
the optimization problem associated with whole-body motion
[14]. Both have been shown to work in practice, but lack
stability and convergence guarantees. Moreover, it is not
always possible to apply these methods to directly bound
the evolution range of DMP-generated trajectories.

To address the aforementioned issues, we propose the
novel Constrained Dynamic Movement Primitives (CDMPs).
CDMPs are inspired by the work of [15], which introduced
a controller with joint-limit avoidance for torque-controlled
robots, based on mapping joint states to a suitable exogenous
state space. This control strategy allows for convergence
and asymptotic stabilization of a reference joint trajectory,
and ensures that the actual joint trajectories belong to the
safe ranges. Our core idea is to transform the feasible
demonstration trajectory states in terms of exogenous states.
By parameterizing the exogenous states instead, DMPs states
are ensured to evolve within the joint limits as long as the
initial policy respects the joint limits restriction.

This paper is organized as follows. Section II provides
the background on robot control, obstacle avoidance and
classical DMPs. Subsequently, in Section III we motivate the
derivation of CDMPs and the related application settings.
The performance of CDMPs is illustrated in Section IV
with simulation experiments on the humanoid robot iCub
[16]. Finally, Section V concludes our results and discusses
potential future extensions. An overview of the proposed
method is shown in Fig. 2.

II. BACKGROUND

A. Robot Modeling and Control

Consider a fixed base and open chain robot with n degrees
of freedom (DoF). The robot dynamics equation can be

derived from the Lagrange formalism [17]:

M(q)q̈+C(q, q̇)q̇+G(q) = Bτ +

Nc∑
k=1

J>
Ck

fk, (1)

where q, q̇, q̈ ∈ Rn are generalized positions, velocities and
accelerations of the robot, respectively, M ∈ Rn×n is the
inertia matrix, C(q, q̇) ∈ Rn×n accounts for Coriolis and
centrifugal effects, G(q) ∈ Rn is the gravity term, B is a
selector matrix, τ ∈ Rn is a vector representing the actuation
joint torques, fk ∈ R6 denotes the k-th external wrench
applied by the environment on the robot, and JCk

is the
corresponding Jacobian. The term C(q, q̇)q̇+G(q) together
is also called bias forces.

A classical control strategy to calculate the desired joint
torques τ d given the desired joint trajectory qd, q̇d, q̈d is
called the computed torque control law:

τ d = M(q)
(
q̈d −KP (q−qd)−KD(q̇− q̇d)

)
+C(q, q̇)q̇+G(q), (2)

where KP (joint stiffness) and KD are feedback matrices.
This control law comprises both feedforward and feedback
terms. By formulating the control law this way, the robot can
have more compliance against the external interactions and
its stability analysis is well understood [18].

It is relevant to note that applying the classic computed
torque control law could sometimes cause the issue of joint
limit violation from the overshoots or external disturbances.
To solve this problem, a novel control law was previously
proposed which incorporates the property of joint limit
avoidance [15]. The novelty of the proposed control law lies
in the fact that the evolution of the joint trajectory is always
guaranteed to remain within the associated physical bounds
qmin and qmax by parameterizing the feasible joint space in
terms of the exogenous variable ξ:

q(ξ) = δ tanh(ξ) + qo, (3)

where qo = 1
2 (qmin + qmax), δ = diag

(
1
2 (qmax − qmin)

)
,

and tanh(·) is a hyperbolic tangent function. The proposed
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control law in the case of set points is given by:

τ = −KP ξ̃ −KDq̇+C(q, q̇)q̇+G(q), (4)

where ξ̃ = ξ − ξd is the tracking error and the desired
trajectory ξd can be obtained using the inverse transformation
of Eq. (3):

ξd = arctanh
(
δ−1(qd − qo)

)
. (5)

For further details, the reader is referred to [15].

B. Obstacle Avoidance Scheme

Since the robot is directly controlled at joint level while
the obstacle position is usually expressed in Cartesian space,
it is therefore inevitable to introduce Cartesian space to
joint space mappings. The relationship between joint space
parameters q ∈ Rn and Cartesian space parameters x ∈ Rm

at the acceleration level can be expressed as

q̈ = J†(ẍ− J̇q̇) + (I− J†J)N, (6)

where J is a Jacobian and J† = J>(JJ>)−1 is its Moore-
Penrose inverse providing least squares solutions; I repre-
sents the identity matrix of proper dimensionality and N
corresponds to a joint space movement in the null space.
From Eq. (6), the end effector movement modification ∆ẍe

for obstacle avoidance can be easily obtained as

∆q̈e = J†∆ẍe. (7)

For link obstacle avoidance, null space movement will be
exploited. Consider the closest point to the obstacle on the
link is xo, with Jo the corresponding Jacobian. From inverse
kinematics, we can have:

ẍo = J̇oq̇+ Joq̈. (8)

By combining Eq. (8) and Eq. (6) to drop q̈ out, we can
solve for N:

N =
(
Jo(I− J†J)

)†(
ẍo − J̇oq̇− JoJ

†(ẍ− J̇q̇)
)
. (9)

Then, by substituting the expression for N back to Eq. (6),
we obtain:

q̈ = J†(ẍ− J̇q̇)+(I− J†J)
(
Jo(I− J†J)

)†(
ẍo − J̇oq̇− JoJ

†(ẍ− J̇q̇)
)
.

(10)

Finally, the link movement modification ∆ẍl for obstacle
avoidance at joint acceleration level is given by:

∆q̈l = (I− J†J)
(
Jo(I− J†J)

)†
∆ẍl. (11)

It can be observed that I − J†J is a symmetric idempotent
matrix (also called projection matrix), so the results can be
simplified as follows:

∆q̈l =
(
Jo(I− J†J)

)†
∆ẍl. (12)

To conclude here briefly, Eq. (7) and Eq. (12) are used
for the design of the CDMPs coupling terms with ∆ẍe

and ∆ẍl calculated from the corresponding potential field,
respectively. It will be shown later that compared with DMPs,
CDMPs have the capability of handling improperly designed
potential field.

C. Dynamic Movement Primitives

Here, we briefly introduce DMPs. DMPs are a flexible
representation for motion primitives. It can be used to gen-
erate either discrete or rhythmic movements. In this paper,
only discrete movements are considered.

Consisting of a set of linear differential equations, DMPs
can be interpreted as a damped spring model with the
following transformation system:

τ ÿ = α(β(g − y)− ẏ) + f + P (y, ẏ), (13)
τ ġ = αg(go − g), (14)

where y, ẏ, g are system states; τ , α, β and αg are positive
constants; go is the final goal; P is called coupling term
and its form is dependent on the choice of the potential
field. Although the goal parameter is usually a constant,
here we formulate it in a differential equation as Eq. (14)
to allow for goal learning, as described later. Theoretically,
we can obtain arbitrary continuous shapes by disturbing the
dynamical system using the nonlinear forcing term f , defined
as:

f = gT
t Θ, (15)

[gt]j =
Ψj(st) · st∑p
k=1 Ψk(st)

(gt − y0), (16)

Ψj = exp(−0.5hj(st − cj)
2), (17)

where gt are called basis functions, composed by the initial
position y0 and the Gaussian kernel Ψj with parameters hj >
0 and cj ∈ [0, 1]. Θ is the vector of basis function weights
or shape vector since it decides the general shape of the
trajectory. Usually, it is Θ that represents a specific policy
in RL algorithms. Given a trajectory from demonstration, Θ
can be efficiently calculated by weighted linear regression.
Phase variable st is calculated from a canonical system that
drives the whole dynamic system:

τ ṡt = −αst. (18)

Since st moves from one to zero, convergence to the goal
go is guaranteed as f vanishes at the end of the movement.
It should be noted that although each DoF typically requires
one transformation system, only one single canonical system
is enough to coordinate all DoFs.

III. CONSTRAINED DYNAMIC MOVEMENT PRIMITIVES

A. Constrained Dynamic Movement Primitives

As mentioned previously, the derivation of CDMPs is
motivated by the novel joint limit avoidance control law
introduced in [15]. The demonstrated trajectory state y is
parameterized by the CDMPs state ξ in a similar way to Eq.
(3), i.e.,

y(ξ) = yδ tanh(ξ) + yo. (19)

As before, yδ = 1
2 (ymin + ymax) and yo = diag

(
1
2 (ymax −

ymin)
)

with ymin and ymax the specified trajectory limits. ξ
can be simply obtained by using the inverse transformation:

ξ = arctanh
(
y−1
δ (y − yo)

)
. (20)
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The evolution rule of the CDMPs state follows that of the
DMPs with the transformation system given by:

τξ ξ̈ = αξ

(
βξ(gξ − ξ)− ξ̇

)
+ fξ + Pξ(ξ, ξ̇), (21)

τξ ġξ = αgξ(gξo − gξ), (22)

where τξ, αξ, βξ and αgξ are positive constants; gξo is the
final goal; Pξ is the coupling term of CDMPs. The nonlinear
forcing term fξ is similarly defined as:

fξ = g>
t Θξ, (23)

[gt]j =
Ψj(st) · st∑p
k=1 Ψk(st)

(gξt − ξo), (24)

Ψj = exp(−0.5hj(st − cj)
2), (25)

where ξo = arctanh
(
y−1
δ (yinit − yo)

)
is the initial position

of the demonstrated trajectory starting from yinit. Last, we
have the canonical system generating the phase variable st:

τξ ṡt = −αξst. (26)

Once the evolution of the exogenous variable ξ is obtained,
the final reference joint trajectory yref can be calculated based
on Eq. (19):

yref(ξ) = yδ tanh(ξ) + yo. (27)

Furthermore, the velocity and acceleration of the reference
trajectory is given by

ẏref(ξ) = J(ξ)ξ̇, (28)

ÿref(ξ) = J(ξ)ξ̈ + J̇(ξ, ξ̇)ξ̇, (29)

where J(ξ) = yδ(1− tanh2(ξ)).
As proven in [15] that the resulting joint reference trajec-

tory is guaranteed to be bounded within the joint limit by
exploiting the property of the hyperbolic function.

B. Coupling Term Design for CDMPs

For a given CDMP, sometimes it is desirable to modulate
the trajectory online so that it can be flexible to different
situations. As in the case of DMPs, introducing coupling
terms in Eq. (21) is the typical approach to account for
such complex behaviors. To realize obstacle avoidance, for
instance, a spatial coupling term can be used to change the
dynamics by modifying the acceleration term of CDMPs as
in Eq. (21). The design of the coupling term is dependent
on the form of the repelling potential field emitted by the
obstacles. Taking a CDMP trajectory escaping from a board
as an example, a piecewise potential field can be designed
as follows. When CDMP trajectory is under the board, the
coupling term is designed as:

Pbelow =

{
βy

∆y
∆z horizontally,

βz
1
∆z vertically,

(30)

where ∆y and ∆z denote the distances to the vertical edge of
the board and the horizontal surface of the board, respectively
and βy and βz are two constants. The potential field is
designed in such way that CDMPs trajectory can obtain
infinity high escape driving force when approaching the

board. When CDMPs trajectory moves out of the region
framed by the vertical edge of the board and the horizontal
surface of the board, the potential field is designed as

Pabove = α
√
∆z, (31)

where α is a constant and ∆z now denotes the vertical
distance to the final goal.

By adding the coupling terms to the CDMPs states di-
rectly, the joint trajectory can be bounded in spite of the
possibly unduly high potential field strengths.

C. Reinforcement Learning of CDMPs

The reinforcement learning algorithm of choice for
CDMPs parameters optimization is called Policy Improve-
ment with Path Integrals (PI2), the derivation of which is
rooted in the first principles of stochastic optimal control
[19]. PI2 is a probability weighted averaging method and thus
no open algorithmic tuning parameter is needed. Allegedly,
PI2 can outperform the other existing direct RL algorithms
by an order of magnitude in terms of the learning speed and
the final cost of the learned policy as shown in [19].

In order for PI2 to learn both shape parameters and goal
parameters of CDMPs, at each time step t of the trial k,
the exploration noises ε

Θξ

t,k and ε
gξ
k drawn from the Gaussian

distributions ΣΘξ
and Σgξ shall be added, respectively. As

a result, Eq. (23) and Eq. (22) now become

fξt = g>
t (Θξ + ε

Θξ

t,k), (32)

τξ ġξ = αgξ(gξo + ε
gξ
k − gξ). (33)

Like other RL algorithms, PI2 requires the cost-to-go S(τi,k)
for each trial τ , starting from ti till the final time tN . By
formulating the cost in terms of the final cost, the immediate
cost and the immediate control cost, we can have

S(τi,k) = φtN,k
+

N−1∑
j=1

rtj ,k+

1

2

N−1∑
j=i+1

(Θξ +Mtj ,kε
Θξ

tj ,k
)>R(Θξ +Mtj ,kε

Θξ

tj ,k
), (34)

where Mtj ,k =
R−1gtj g>tj
g>tjR

−1gtj
is the matrix needed to project the

exploration noises onto the parameter space with R a weight
factor and g calculated from Eq. (24). Once the trajectory
cost is obtained, the update rule for the shape parameters
Θξ is given by:

δΘξti =

K∑
k=1

P (τi,k)Mtj ,kε
Θξ

tj ,k
(35)

[δΘξ]j =

∑N−1
i=0 (N − i)Ψj,ti [δΘξti ]j∑N−1

i=0 Ψj,ti(N − i)
(36)

Θξ ← Θξ + δΘξ (37)

where P (τi,k) =
e−

1
λS(τi,k)∑K

k=1 e
− 1

λS(τi,k)
is the probability of each

trial. The intuition behind is that lower costs should have
higher probabilities.
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Goal parameter can be updated in a similar yet simpler
way since only the probability at the starting time of the
trial k is required:

δgξ =

K∑
k=1

P (τ0,k)ε
gξ
k , (38)

gξ ← gξ + δgξ. (39)

Since there is no interference between learning gξ and
Θξ, these parameters can be updated simultaneously using
exactly the same trial.

It should be noted that by adding the exploration noises
to the CDMPs parameters directly, the generated exploratory
joint trajectory after the inverse transformation will respect
the joint limits as well.

IV. EVALUATIONS

In this section, the experimental validation of the proposed
method on the iCub humanoid robot is presented [20]. The
iCub is a humanoid robot with a total of 53 DoFs. In our
experiments, 7 of them are activated: 3 for the torso, 3 for
the shoulder, and 1 for the elbow (see Fig. 1). The remaining
joints are locked in the home position, and the base of the
robot is fixed by setting a rigid constraint between the base
link and the world frame.

We evaluate the proposed method by performing three
experiments. The first one is a toy example for comparison
between CDMPs and DMPs to illustrate the necessity of
bounding DMPs; the second one is a reaching task with link
obstacle avoidance; finally, the third one is a ball-dropping
task with end-effector obstacle avoidance. All the experi-
ments are conducted in the Pybullet simulation environment
[21] with the external off-the-shelf kinematics and dynamics
library iDynTree [22].

A. Toy Examples for Comparison of CDMPs and DMPs

1) Task description: In this task, the effectiveness of joint
limit avoidance of CDMPs is demonstrated by comparing
the evolution of the associated joint states with the ones of
DMPs, whose parameters are the same ones used in [3].
Usually there are two cases that have high chance to hit the
joint limits, namely goal adaption and improper accelera-
tion. Goal adaption refers to modifying DMPs dynamics by
changing the goal parameter only. Because a simple change
of the goal state automatically creates a complex rescaling
of the entire movement, the maximum value of the rescaled
system is difficult to be bounded in DMPs. In addition, very
large acceleration from the dramatic change of a trajectory
could also contribute to joint limit violation as a result of
overshoot. In this task, however, it will be shown that the
allowable joint limit value can be easily satisfied by using
CDMPs.

2) Experimental results and discussion: It can be seen in
Fig. 3a that given an eligible demonstrated trajectory, both
DMPs and CDMPs can accurately imitate a given trajectory.
However, when adapting the final goal to a higher value,
the obtained DMPs trajectory has a maximum value of 48.5

(a) Goal adaption

(b) Improper acceleration

Fig. 3: Toy examples for CDMPs and DMPs comparison.

deg and it exceeds the maximum limit 35 deg. On the other
hand, by using CDMPs, the range of the obtained trajectory
is bounded all the time with the maximum value 34.4 deg.
Moreover, when the imitated trajectory has a steep change,
as shown in Fig. 3b, DMPs cannot be guaranteed to evolve
within the specified limit (55 deg in the example). The
maximum value due to the overshoot of DMPs is 58.9 deg,
while for CDMPs it is bounded to 52.8 deg.

It can be concluded from the above toy examples that the
proposed CDMPs can overcome the problem of joint limit
violation, which is very common in the traditional DMPs.

B. Reaching Task with Link Obstacle Avoidance

1) Task description: In this task, the effects of CDMPs
under the link obstacle avoidance scheme are evaluated.
The robot’s end effector is required to reach a desired goal
positioned at (0.350, 0.091, 0.853) m in Cartesian space. In
the meantime, an obstacle board is placed at the final position
of the upper arm link of the robot as shown in Fig. 4a. The
distance between the board and the most dangerous point on
the link is −1.37 cm, where a negative distance indicates
overlap and therefore a collision between the link and the
obstacle happens.

To prevent the dangerous link from hitting the obstacle,
the redundancy of the robot will be exploited by using Eq.
(12). The coupling term is designed in terms of a simple
constant potential field.

2) Experimental results and discussion: By adding the
coupling term and exploiting the redundancy of the robot,
link collision avoidance and end effector reaching task can
be satisfied simultaneously. As shown in Fig. 4b, robot
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(a) (b) (c) (d)

Fig. 4: Screenshots of iCub executing different tasks using
CDMPs. (a)-(b): CDMPs under the potential field for link
obstacle avoidance; (c)-(d): ball dropping performance before
and after learning the optimal CDMPs parameters with RL
where the red line denotes the virtual trajectory of the end
effector from forward kinematics neglecting the coupling
terms and the black line denotes the real one.

redundancy is exploited, as it can be observed from the
additional displacements of the torso and elbow joints.
The resulting end effector final position is measured as
(0.354, 0.083, 0.848) m, which is slightly different from the
requested value. The dangerous upper arm link now has a
distance of 1.03 cm from the obstacle board and thus link
collision is avoided. CDMPs are capable of realizing obstacle
avoidance with the help of the coupling terms. It should be
noted that during the task, when choosing very high strength
for the potential field, CDMPs still ensure the trajectory is
bounded, while DMPs cannot.

C. Ball-dropping Task with End Effector Obstacle Avoidance

1) Task description: The aim of this task is mainly to
show that CDMPs can also work well with RL. The devised
experiment is a manipulation task where the robot is required
to successfully drop a ball (with the radius 1.2 cm) to a
cup. Meanwhile, a board is put between the starting position
and the final position of the end effector. The purpose of
placing the board is twofold. First, the end effector obstacle
avoidance capability using CDMPs will be tested. Second,
the movement range of the torso pitch will be constrained by
CDMPs to prevent the upper body of the robot from hitting
the board. The initial policy for each joint is a straight line
with respective starting and final positions. The robot will
miss the cup using the initial policy, due to a realistic wrong
estimation of the cup position while the real one is at (0.318,
0.113, 0.670) m.

The total cost function J by the RL algorithm is composed
by two parts: the intermediate cost Jt and the final cost
JN , i.e. J = Jt + JN . The intermediate cost is formulated
in terms of several concerns. First, the energy used by the
robot is penalized by minimizing the cumulative torques
τ . Besides, the end effector accelerations q̈ are penalized
for promoting a minimum jerk trajectory. Furthermore, the
norm of the CDMPs parameters is included for obtaining a
smooth regularized solution. So far, the intermediate cost Jt

Fig. 5: Bounded torso pitch trajectory after learning.

Fig. 6: Error-bar curves of cost values in the ball-dropping
task. Solid curves represent the mean values averaged over
10 learning runs while the vertical bars denote the standard
deviation. Each update is based on 5 trials. The first success-
ful dropping happens after circa 12 trials.

is formulated as

Jt =

∫ tN

t0

γEτ
>τ + γJq̈

>q̈+ γNΘ
>Θdt, (40)

where γE = 10−3, γJ = 10−2 and γN = 10−2 are positive
weight coefficients. The final cost JN is formulated by the
distance from the initial position and an indicator term:

JN = γD exp
(
(xN − x0)

2
)
+ γI1drop, (41)

where x0 and xN are the end effector initial and final posi-
tion, respectively (x0 = (0.312, 0.190, 0.790) m is constant
throughout the training process); γD = 1 and γI = 100
are cost weights; 1drop is an indicator function with value
1 when missing the cup and 0 when dropping the ball
successfully.

2) Experimental results and discussion: It can be seen
in Fig. 4c that the robot missed the cup with the initial
policy, while after training for some trials, the robot can
find the correct cup position and thus drop the ball in the
cup successfully as in Fig. 4d. As mentioned earlier, the
movement range of the torso pitch is bounded between
0.32 rad and −0.27 rad. One of the optimized torso pitch
trajectories is shown in Fig. 5 with the maximum and
minimum value 0.29 rad and −0.25 rad, respectively. The
proposed CDMPs offer a convenient method to set the limits
for the generated trajectory, while the traditional DMPs have
no such advantage. The learning results are shown as in Fig.
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6, with the total cost being reduced continuously. It can be
concluded that CDMPs can also work well together with RL.

V. CONCLUSIONS

In this paper we presented novel CDMPs towards bound-
ing the original DMPs states. The derivation of CDMPs
is inspired by a previously proposed joint limit avoidance
control law. The core idea of CDMPs is to transform the
feasible demonstrated trajectory states into the exogenous
states and then control the exogenous states instead. The
proposed method ensures that the resulting joint trajectory
will evolve within the specified movement limits. The ef-
fectiveness of CDMPs is verified by two toy experiments,
an obstacle avoidance task, and a ball dropping task, where
the unbounded motion caused by the original DMP coupling
terms or the exploration noises in RL is alleviated. As an
extension, we plan to apply CDMPs to the whole body
movement generation and optimization.
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