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Abstract— We consider the problem of grasping in clutter.
While there have been motion planners developed to address
this problem in recent years, these planners are mostly tailored
for open-loop execution. Open-loop execution in this domain,
however, is likely to fail, since it is not possible to model
the dynamics of the multi-body multi-contact physical system
with enough accuracy, neither is it reasonable to expect robots
to know the exact physical properties of objects, such as
frictional, inertial, and geometrical. Therefore, we propose
an online re-planning approach for grasping through clutter.
The main challenge is the long planning times this domain
requires, which makes fast re-planning and fluent execution
difficult to realize. In order to address this, we propose an
easily parallelizable stochastic trajectory optimization based
algorithm that generates a sequence of optimal controls. We
show that by running this optimizer only for a small number of
iterations, it is possible to perform real time re-planning cycles
to achieve reactive manipulation under clutter and uncertainty.

I. INTRODUCTION

In this paper, we consider the problem where a robot
must reach through a cluttered environment to grasp a target
object. This problem is typically seen in warehouses where
robots are required to retrieve items from shelves to fulfill
a customer’s order, or in our homes where a robot must
reach into the fridge to pick up an object. To do this, the
robot needs to contact other objects in the environment and
push them out of the way (Fig. 1a-d). An object that is
pushed by the robot may in turn push and dislocate other
objects, including the target object. Undesired events can
happen during the interaction, such as objects falling off the
edge of the surface. The problem is the generation of robust
and reactive robot actions that grasp the target object while
preventing undesired events from taking place.

Existing work addresses this problem using motion plan-
ning followed by open-loop execution [1]–[4] i.e. the robot
executes a sequence of actions one after the other with-
out getting any feedback from the environment. These ap-
proaches can be divided into two. The first approach uses
motion planning algorithms, e.g. kino-dynamic sampling-
based algorithms [2] or trajectory optimization methods [1],
within a physics engine to generate the robot trajectory.
Trajectories that are produced this way, however, are likely
to fail in the face of uncertainty during real-world execution.
Consider the scene in Fig. 1a, where the target object is near
the center of the table. We can model this scene in a physics
engine, plan a sequence of actions with a particular choice of
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(a) Initial scene (b) Contact triggers re-planning

(c) Re-planning (d) Target object grasped

Fig. 1: Snapshots from execution with online re-planning.

physical parameters (e.g. friction coefficients, object masses,
object shapes) that take the robot to the grasping goal state.
However, if this plan is executed in an open-loop manner
in the real world, it can easily fail as the objects will not
move exactly as predicted during planning. This is due to
the uncertainty in the physics model of the physics engine
and the assumed physical parameters of the objects.

The second open-loop approach addresses this problem by
accounting for uncertainty during planning. This approach
extends motion planners to generate actions that are robust
to uncertainty [3]–[5]. However, these planners are either re-
stricted to a particular set of “funneling” actions, or generate
highly conservative/pessimistic plans that are guaranteed to
succeed under uncertainty.

In this paper, we take a different reactive approach and
investigate the potential of closed-loop methods to address
uncertainty during grasping in clutter. One can use a planner
to generate a plan to the goal state, execute a portion of
this plan, observe the environment, and then re-plan from
the resulting state to the goal, repeating this process until
task completion. This online re-planning or model predictive
control (MPC) approach has been implemented in many
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areas of robotics, including the problem of pushing a single
object [6], [7], but it has not yet been explored for the
problem of manipulation in clutter.

The major challenge with online re-planning in this do-
main is long planning times. The average planning time
reported in the literature for the problem of grasping in
clutter is in the order of minutes [1]–[4]. Then, under the
online re-planning approach, the robot would need to execute
a small action, update its world model with feedback and
then will need to wait for possibly minutes before it receives
the next action from the planner. This long re-planning time
makes it impractical for robots to use feedback from the
environment in order to create new plans. Thus, this hampers
real world applications and is highly undesirable.

We propose an online re-planning approach to address this
challenge. First, we extend trajectory optimization methods
that use parallel trajectory rollouts [8], [9] in search of
a lower-cost trajectory. By performing each roll-out on a
different core, we are able to reduce the time each iteration of
our planner takes to be equivalent to a single roll-out. Second,
we track the deviation of the actual state from the predicted
state, and perform re-planning only if the state deviation
exceeds a threshold. This prevents us from planning at every
time step and allows us to have an automatic system that
can be adjusted between open-loop execution and standard
model predictive control. Finally, we formulate the problem
as optimizing a cost function where reaching the goal is not
a hard constraint, and therefore even if a quick re-planning
cycle does not produce a trajectory that reaches the goal (i.e.
grasps the target object) within the given time limit, we can
still use it if it is a lower-cost trajectory.

Our specific contributions include an on-line re-planning
(OR) algorithm to address uncertainty during grasping in
clutter. We show that using our approach, one can achieve
real time re-planning cycles with a robot in difficult and clut-
tered real environments. Real robot experimental results can
be seen at https://youtu.be/RcWHXL2vJPc. More-
over, we compare OR to open-loop execution, particularly to
naive re-planning (NR), which plans a trajectory, executes
it open-loop until the end, checks if the goal is achieved,
and repeats this process if not. We show that OR is more
successful in grasping the target object in a time limit,
produces lower cost execution trajectories, and is faster.

II. PROBLEM DEFINITION

As shown in Fig. 1, we consider the problem where a robot
must plan a trajectory from a given initial pose to a final pre-
grasping pose to retrieve an item from a cluttered environ-
ment. We consider a planar robot consisting of an arm and
a gripper as shown in the figure. The robot’s state is defined
by a vector of joint values qR “ tθx,θy,θrotation,θgripperu,
where the θ values represent the x-axis prismatic joint, the
y-axis prismatic joint, the rotational joint and the gripper’s
opening joint values, respectively. The scene includes D`1
movable dynamic objects. qi refers to the six-dimensional
pose (three translations and three rotations) of each object,
for i“ 1, . . . ,D. qTarget refers to the pose of the target object,

i.e. the object to be grasped. We assume a flat surface with
edges, such as the table in Fig. 1, and dropping any object
off the edges is undesired.

We use xt to represent the complete state of our system at
time t, which includes the state of the robot and all objects;
xt “ tqR,q1, . . . ,qD,qTargetu. We consider a control input ut
applied at time t for a fixed duration ∆t . The controls in
our case are velocities applied to the robot’s degrees of
freedom; ut “ t 9θx, 9θy, 9θrotation, 9θgripperu. Then, the discrete
time dynamics of the system is defined as:

xt`1 “ f pxt ,utq (1)

where f is the state transition function.
We assume an initial state of the system, x0, and we define

our goal as generating a sequence of control inputs, such that
the gripper grasps the target object as quickly as possible,
without dropping objects off the table. We use the notation
u0:n´1 to represent a sequence of control signals through n
time steps, each applied for a fixed duration. Similarly, we
use x0:n to represent a sequence of states.

We use a physics engine [10] simulating rigid-body dy-
namics to model f . Nevertheless, any physics engine is an
inaccurate model of the real-world physics and uncertainties
over the system dynamics are inevitable. Indeed even if
we assumed perfect modeling, it is difficult for a robot to
know the exact geometric, frictional, and inertial properties
of objects in an environment. In addition, object tracking
systems come with inaccuracies in the estimation of object
poses in an environment. Therefore, our objective in this
work is to find a sequence of controls that would move the
system to a goal state even under an inaccurate model of the
system and its dynamics.

III. PROPOSED APPROACH

To address the inaccuracies mentioned above, we propose
to use an online re-planning approach, where the robot makes
a plan, executes a portion of it, observes the resulting state,
and re-plans.

Below, in Sec. III-A, we first present the planner that we
use to generate a sequence of controls to the goal from a
given state. In Sec. III-B, we show how we use this planner
within an online re-planning framework. In Sec. III-C, we
present the baseline approach we compare against in this
paper.

A. Physics-based trajectory optimization

Recent stochastic trajectory optimization methods such as
STOMP [9] and model predictive control methods such as
MPPI [8] show impressive speed by using parallel rollouts.
Moreover, since these are optimization-based methods, even
when they are used with a small time limit, they can
still output an improved lower-cost trajectory, even if the
trajectory is not necessarily reaching a goal state. In contrast,
sampling-based planners such as RRTs and PRMs [2], [4]
typically do not return a useful solution unless they are run
until a path to the goal is found, which can take minutes.
To the best of our knowledge, such parallelizable stochastic
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trajectory optimization methods have not yet been used to
solve grasping in clutter problems. However, the properties
we mention above make parallelizable stochastic trajectory
optimization methods a promising approach for online re-
planning to address problems in this domain.
We formulate the following problem:

min
u0:n´1

rwg ¨ cgpxnq`

n´1
ÿ

t“0

ÿ

r
pwa ¨ ca`wd ¨ cd`we ¨ ceqs (2)

s.t. xt`1 “ f pxt ,utq,

x0 is f ixed, ut “ 0 f or t ă 0.

where we search for an optimal sequence of controls u0:n´1
that minimizes the weighted combination of costs. We use
four cost terms; cg,cd ,ce,ca and corresponding weights
wg,wd ,we,wa.
‚ cgpxnq “ d2

T `wφ ¨ φ
2
T . This is the terminal goal cost

term, quantifying how far the robot hand is from grasp-
ing the target object at the final state. We illustrate how
the distance dT and the angle φT are computed in Fig. 2.
We first draw a vector from a fixed point in the gripper
to the target object. dT is the length of this vector, i.e.
the distance between the fixed point in the gripper and
the target object. φT is the angle between the forward
direction of the gripper and the vector. We use wφ to
weight angles relative to distances.

‚ cdput´1:t ,xt:t`1q “
řD

i pxi
t`1´ xi

tq
2. This is the distur-

bance cost term, quantifying how much each object
moved between two time-steps. This term encourages
the robot to minimize the change in the configuration
of the rest of the scene.

‚ ceput´1:t ,xt:t`1q “
ř

i etk¨d
i
Eu for all i out of the safe

zone. This is the edge cost term, penalizing those
objects that get too close to the boundary of the table or
that get out of the boundary. As we illustrate in Fig. 3,
we define a safe zone that is smaller than the boundary
of the table. If at time t`1 an object i is out of this safe
zone, we compute the distance it is pushed between t
and t`1, which we define as di

E . k is a constant term.
We do not add any edge costs for objects that are in the
safe zone.

‚ caput´1:t ,xt:t`1q “ put´ut´1q
2. This is the acceleration

cost term, with which we penalize large changes in
robot velocities between two time steps.

Note that, instead of imposing the terminal grasping state
as a hard constraint, we declare it as a cost term, cg. We
are able to accept trajectories that do not reach the goal

completely, because we use this planner in a re-planning
framework, i.e. we can rely on future re-planning cycles to
take us to the goal.

We solve this problem using Alg. 1, which adapts the
STOMP algorithm [9] for physics-based grasping through
clutter.

Algorithm 1: Physics-Based Stoch. Traj. Optim. (PB-
STO)

Input : x0: Initial state
u0:n´1: Initial control sequence
Imax: Maximum number of iterations

Output : u0:n´1: Control sequence
x0:n: Predicted states

Parameters : K: Number of noisy trajectory rollouts
ν : Sampling variance
Cthresh: Cost threshold implying success
nmin: Minimum number of time steps

Subroutines: Cost: Computes total cost, i.e. the
minimized value in Eq. (2).

1 x0:n Ð Roll out u0:n´1 over x0 to get initial state
sequence

2 while Imax not reached and Costpu0:n´1,x0:nq ąCthresh
do

3 for kÐ 0 to K´1 do
4 xk

0 Ð x0
5 uk

0,n´1 Ð Npu0:n´1,νq

6 for t Ð 0 to n´1 do
7 xk

t`1 Ð f pxk
t ,uk

t q

8 if Costpuk
0:t ,x

k
0:t`1q ďCtresh and t ě nmin

then
9 return (uk

0:t ,x
k
0:t`1)

10 k˚Ð argmin
k
pCostpuk

0:n´1,x
k
0:nqq

11 if Costpuk˚

0:n´1,x
k˚

0:nq ăCostpu0:n´1,x0:nq then
12 u0:n´1 Ð uk˚

0:n´1
13 x0:n Ð xk˚

0:n
14 return pu0:n´1,x0:nq

We start with an initial candidate control sequence u0:n´1.
During each iteration between lines 2-13, we try to improve
this control sequence, until the cost is lower than a threshold,
or until a maximum number of iterations is reached (Line 2).
During each iteration, we create K new control sequences,
roll out these controls in parallel using our model of the
system, and compute the cost for each (Lines 3-9). Each
new control sequence uk

0:n´1 is created by adding stochastic
noise to the candidate control sequence u0:n´1 (Line 5). The
control sequence with the minimum cost is then identified
and set as the new candidate control sequence.

Most robot motion planners that use trajectory optimiza-
tion formulate the problem as a fixed horizon problem, i.e.
with a predetermined number of time-steps/way-points. In
the problem of grasping in clutter however, the length of the
required trajectory can change significantly: For example, the
target object may be pushed and moved away from its initial
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position, and this may require a much longer trajectory than
a case where the target is grasped at its original position.
Therefore, we initialize the planner with a long enough
control sequence, but also allow it to short-cut trajectories
if the cost indicates success earlier (Lines 8-9). Moreover,
physics-based trajectory roll outs are time consuming, hence
truncating the roll out when success has been achieved leads
to lower planning times.

B. Online Re-planning

If allowed to run for many iterations, i.e. with a large
Imax, Alg. 1 can generate successful plans for the problem of
grasping under clutter, as we show in our results in Sec. IV.
However, when executed open-loop, these plans are likely
to fail due to the uncertainties in the system dynamics,
inaccuracies in the physical properties of the objects, and
the state observations. To address this, we use Alg. 1 within
an online re-planning (OR) algorithm, which we present in
Alg. 2.

Algorithm 2: Online Re-planning (OR)
Input : u0:n´1: Initial controls, e.g. straight line

motion
Params: SDthresh: State deviation threshold

nmin: Minimum number of controls to
optimize

ManyIter: Large number of iterations, e.g. 50
FewIter: Small number of iterations, e.g. 1

1 xcurrent Ð Observe current state
2 pu0:n´1,x0:nq Ð PBSTO(xcurrent ,u0:n´1,ManyIter)
3 while target object not grasped do
4 Execute u0
5 Remove u0 from sequence, i.e. u0:n´2 Ð u1:n´1
6 Remove x0 from sequence, i.e. x0:n´1 Ð x1:n
7 xcurrent Ð Observe current state
8 if target object not predicted to be grasped at xn
9 or large state deviation, i.e.

||x0´xcurrent || ą SDthresh
10 or too few controls left, i.e. n´1ă nmin then
11 u0:n´1 Ð u0:n´2 ` single straight step to target
12 pu0:n´1,x0:nq Ð PBSTO(xcurrent ,u0:n´1,FewIter)
13 else
14 nÐ n´1 Ź Decrement length of controls

On line 2, we generate a locally optimal open-loop tra-
jectory by calling the PBSTO planner with a large number
of iterations. Then we start executing this trajectory. After
execution of every control action (line 4), we observe the
current state (line 7), and then re-plan from this current state
(line 12). However, when we re-plan, we call the planner
with only a few iterations, to receive fast, close to real-time,
updates to the plan. We warm-start the trajectory optimizer
by providing the previous plan. Furthermore, we re-plan only
if it is necessary. To do this, we check if the final predicted
state of the current plan grasps the target object (line 8),
and we check if there are too few controls left in the plan
(line 10). More importantly, if the real observed state is

evolving according to the planner’s predictions, and the other
previously mentioned conditions are still satisfied, we do not
re-plan. We check this on line 9, where we compute the
deviation between the observed state and the first state of
the planned trajectory, and verify if this deviation is less
than a threshold. This threshold can be used to adjust how
reactive the system is to unexpected events.

C. Naive Re-planning

Open-loop execution during grasping in clutter can be
unsuccessful due to uncertainty. In this paper we propose
to address this problem through online feedback control.
However, a naive approach to fixing this problem can be re-
planning if success is not achieved after the complete open-
loop execution of a plan. We present this Naive Re-planning
(NR) approach in Alg. 3, and use it as a baseline in our
experiments.

Algorithm 3: Naive Re-planning (NR)
Params: ManyIter: Large number of iterations, e.g. 50

1 while target object not grasped do
2 xcurrent Ð Observe current state
3 u0:n´1 Ð initial controls, e.g. straight to target

object
4 pu0:n´1,x0:nq Ð PBSTO(xcurrent ,u0:n´1,ManyIter)
5 Execute u0:n´1

IV. EXPERIMENTS AND RESULTS

Through our experiments, we compare the online re-
planning (OR) approach with the naive re-planning (NR)
approach. We hypothesize that OR is more successful in
grasping the target object, that OR results in an execution
cost that is lower-cost, and that OR is also faster. We inves-
tigate whether using the physics-based stochastic trajectory
optimization (PBSTO) method, we can reactively re-plan
close to real-time, or at least fast enough to avoid noticeable
delays during execution.

We implemented our algorithms using the Mujoco [10]
physics engine. We perform experiments both in simulation
and on a real robot. As shown in Fig. 1, we assume a world
consisting of objects on a table, and a planar robot with a two
finger gripper. We make a distinction between two different
type of worlds we deal with.
Planning world: The planning world is a simulation envi-
ronment where the robot generates its plans/controls.
Execution world: The execution world is the environment
where the robot executes actions and observes the resulting
actual state. The execution world is simulated for the simu-
lation experiments and it is the physical world for real robot
experiments.

Whether in simulation or on the real robot, we assume a
mismatch between the physics of the execution world and
the planning world, the physical object properties of the two
worlds, and the state of the two worlds. We use the term
uncertainty level to refer to the degree of this mismatch. For
example, no uncertainty implies a perfect match between
the Planning World and the Execution World, which is only
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possible in simulation experiments. Low uncertainty implies
a low level of mismatch, and so on.

A. Simulation experiments

We perform experiments in simulation to evaluate the
performance of our planners in scenes with varying degrees
of clutter and uncertainty. We begin by creating execution
worlds. Here, the execution world is created in Mujoco and
it consists of 15 objects (boxes and cylinders), a 0.6mˆ0.6m
table and our planar robot as shown in Fig. 4.

For each execution world:
‚ We randomly select a shape (box or cylinder) for each

of the 15 objects.
‚ For each object, we randomly select1 shape dimensions

(extents for the boxes, radius and height for the cylin-
der), mass, and coefficient of friction.

‚ We select a pose for the target object from a Gaussian
with a mean at the center of the table and a variance of
0.01m.

‚ For the other 15 objects, we randomly select non-
colliding object poses on the table.

We generate 100 such execution worlds. To generate a
planning world from an execution world, we add Gaussian
noise onto the physical parameters of the execution world2.
For each execution world, we create four such planning
worlds with increasing amounts of noise, corresponding to
the four uncertainty levels: no uncertainty, low, medium,
and high uncertainty. Given a pair of Planning world and
Execution world, we then run and execute one of our
planners. Moreover, we simulate physics stochasticity in the
execution world by adding Gaussian noise3 on the velocities
(linear and angular) v of the robot and dynamic objects at
every simulation time step.

ṽ“ v`µ, µ „N p0,β q (3)

where N is the Gaussian distribution and β is the vector
of variances. We give each planner a timeout of 15 min-
utes, which includes all planning, re-planning, and execution
times. A planner may return long before this timeout, if the
robot manages to grasp the target object in the execution
world. We run and compare the following planners:
‚ NR: The naive re-planning algorithm, with ManyIter“

50, ν “ 0.008, K “ 8.
‚ OR: The online re-planning algorithm, with ManyIter“

50, FewIter“ 1, nmin “ 2, ν “ 0.008, K “ 8, SDthresh “

0.5.
1 The uniform range used for each parameter is given here.

Box x-y extents: r0.03m,0.05ms; box height: r0.036m,0.04ms;
cylinder radius:r0.035m,0.04ms; cylinder height:r0.04m,0.055ms;
mass:r0.2kg,0.8kgs; coef. fric.:r0.2,0.6s.

2 The variance of the Gaussian noise for each parameter under low-
uncertainty are given here. These values are multiplied by 2 for medium, and
3 for high uncertainty. Object pose translation: 0.005; Object pose rotation
around vertical axis: 0.005; Box x-y extents, cylinder radius, and height:
0.005; mass:0.01; coef. fric.:0.005.

3 In the case of no uncertainty, we did not add any extra noise to the
system dynamics. However, the vector of variances of the added Gaussian
noise for each object was β “ t0.003,0.006,0.009u1 for low, medium and
high uncertainty levels respectively.

For all planners, we initialize the control sequences to
straight line trajectories toward the goal. Each initial control
sequence includes six actions, with an average resultant
velocity of 0.04m{s. Each action is executed for ∆t “ 1s. The
weights and constants used in the cost terms are: wg“ 10000,
wφ “ 1.0, we “ 1.0, k “ 1000, wa “ 0.1, wd “ 800.

B. Simulation Results

We discuss and compare the performance of OR and NR.

OR is more successful than NR. We call an experiment
success, if the execution stopped with the target object inside
the hand pre-grasp region and if no other object is dropped
off the table. We show the success rates over the 100 random
scenes under four different uncertainty levels in Fig. 5a. Both
OR and NR succeed in all scenes for the no uncertainty
and low uncertainty conditions. However, as the uncertainty
increases, NR shows a dramatic drop to 50% success rate,
while OR can maintain 90%.

We show example plans in Fig. 4. In the top row, we show
the output of the planner and the state sequence as predicted
by the planner in the Planning World. In the middle row, we
show the NR execution of the same scene in the Execution
World with noise added at the medium uncertainty level. As
the hand pushes on a cylinder, it does not move out of the
way as the planner predicted. It pushes and topples the target
object, resulting in a failure. In the bottom row, we show the
OR execution in the same Execution World. Detecting that
the cylinder does not move as predicted, OR re-plans and
shifts the gripper to the side, so that the cylinder can be
pushed out of the way.

It is important to note that, the success rates in Fig. 5a
are not attained after one planning and execution cycle.
In other words, the 100% success rate for NR under low
uncertainty does not mean that open-loop executions of all
plans were successful in this case. Instead, it is more often
that the execution of an open-loop plan fails, but leaves
the robot at a close enough point to the target that, the
subsequent plans achieve success. We present Fig. 5b to
explain this, which shows the average number of re-plans of
each planner under varying uncertainty. As can be seen, both
planners show increasing number of re-plans with increasing
uncertainty. Although, each re-plan is much cheaper for
online re-planning compared to naive re-planning.
OR generates lower execution cost than NR. After exe-
cution of a planner is completed successfully, we compute
the total cost of the executed trajectory. Fig. 5c shows the
average execution costs of the planners in log scale versus
uncertainty. We use only the successful plans for this plot
since failure examples run until the arbitrary time limit we
have set (15 minutes), and can accumulate arbitrarily large
costs. Again, while OR and NR perform similar at low
uncertainties, the execution cost of NR grows significantly
with increasing uncertainty.
OR is faster than NR. We record the total re-planning
and execution time a planner takes after the robot makes
its first move. Again, we use the successful examples only,
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Fig. 4: Top row: The planned control sequence and state evolution. Middle row: Open-loop execution of the planned control
sequence fails under medium uncertainty. Bottom row: Online re-planning algorithm OR succeeds under medium uncertainty.

(a) Success rate (b) Average number of re-plans (c) Average execution cost (d) Average elapsed time

Fig. 5: Simulation results for 100 random scenes. In b-d, we plot the average with 95% confidence interval of the mean

(a) Success rate (b) Average number of re-plans (c) Average execution cost (d) Average elapsed time

Fig. 6: Real robot results for 5 random scenes. In (b)-(d), we plot the average with 95% confidence interval of the mean

since failure examples run until the pre-set time limit of 15
minutes and therefore do not give an indication of speed. We
plot this total elapsed time in Fig. 5d. Observe that the time
NR takes grows rapidly with uncertainty, while OR is much
faster in reaching the goal.

Note that, the above plot does not include the time spent to
find the initial control sequence. We use the PBSTO planner
to find this initial sequence as well for both OR and NR,
with a limit of 50 iterations. Averaged over 400 runs (100
scenes, 4 uncertainty levels), the PBSTO planner needed 28
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seconds with a standard deviation of 16 to find a plan.
The advantage of the PBSTO planner, however, is that

it can also be used successfully with a small number of
iteration limit to quickly adapt plans under uncertainty. For
online re-planning (OR), we ran the PBSTO planner with
the iteration limit of 1 for these quick updates. During 400
executions, the OR planner performed 7816 such re-plans.
On average, each such update took 0.4 seconds with a
standard deviation of 0.25 seconds. Therefore, we are able
to perform online grasping through clutter in near real time.
Moreover, in comparison with works in the literature [1]–[4]
about grasping in clutter where the average planning time
is in the order of minutes, our approach shows impressive
planning and re-planning times.

C. Real robot experiments

In the real robot experiments, we use a Robotiq two finger
gripper attached to a UR5 arm which is then mounted on an
omni-directional robot (ridgeback). As shown in Fig. 1, we
fix the orientation of the arm relative to the table such that
is at a specified height, above the table and is parallel to it.
This way the gripper moves with the omni-directional base
yielding a 4 degrees of freedom robot. The gripper velocities
which is the output of our optimization is then transformed to
the omni-directional base through a fixed velocity transform.
We place markers on objects (cylinders and boxes) and sense
their full pose (position and orientation) in the environment
using the OptiTrack motion capture system.

We create N “ 5 execution worlds. We created a mix
of difficult (where the target object is behind many closely
packed objects) and easy (where the target object is easily
accessible) scenes for the experiments. All these scenes
can be seen in our video at https://youtu.be/
RcWHXL2vJPc. Then, we create a planning world by using
estimated values of mass and shape of objects and then get
the pose information from our motion capture system. In
addition, we sample the coefficient of friction for the various
objects from a multivariate Gaussian distribution with a mean
of 0.5 and a variance of 0.01.

We are aware that motion capture systems provide a level
of object tracking performance which cannot be achieved
by using a standard vision system especially in clutter.
Therefore, to see how our online re-planning approach would
cope in reality with vision systems, we perform experiments
where we artificially insert different levels of pose (x,y
positions) uncertainty. We do this by sampling from a Gaus-
sian distribution where the mean is the measured position
from our motion capture system. We select a variance of
t0.005,0.01,0.015um for low, medium and high uncertainty
levels respectively.

D. Real robot experimental results

We ran a total of 40 real robot experiments for 5 scenes
and 4 uncertainty levels using both naive re-planning and
online re-planning. Our results are shown in Fig. 6. In general
they are similar to the simulation experiments. Moreover,
in Fig. 6a, the naive re-planning approach is not always

successful even when no artificial uncertainty is added. This
is due to the inherent uncertainty in the real world dynamics.

In Fig. 7, we show an example scene from our real robot
experiments. The naive re-planning approach (top row) was
not successful in grasping the target object even under no
additional uncertainty. The reason for this is the inherent un-
certainty in the real world. More specifically, it is due to the
mismatch between the planning environment in simulation
and the real world especially in terms of object shape, mass,
and friction coefficient. Moreover, the real objects are not
fully rigid bodies. Hence predictions of physics in the real
world becomes difficult especially for cases where the robot
pushes on multiple objects in contact with each other (second
snapshot, top row). Therefore, at the end of an open-loop
execution in the real world, the robot can put the state of the
system in a dead-end (fourth snapshot, top row) from which
recovery and task completion becomes extremely difficult.
On the other hand, our online re-planning approach shown
in the bottom row succeeds in this scene. It is able to track
changes between a planned trajectory and the actual state
trajectory in the real world. We re-plan if the changes are
large and continue this process until the robot successfully
grasps the target object. Videos of sample executions can be
found at https://youtu.be/RcWHXL2vJPc.

V. RELATED WORK

Uncertainty is inevitable during non-prehensile manipula-
tion Yu et al. [11]. One approach to handling uncertainty is
through actions that funnel uncertainty to the goal state(s)
[5], [12]–[14]. Uncertainty is also tackled through using
sensor feedback during manipulation. Lynch et al. [15]
proposed a pushing control system where tactile feedback
and object motion predictions are used. Hsiao et al. [16]
describes the manipulation problem as a partially observable
Markov decision process (POMDP) and formulates methods
to efficiently generate robust strategies. More recently, Zhou
et al. [17], proposed a probabilistic algorithm that generates
sequential actions to iteratively reduce uncertainty until an
object’s pose is uniquely known. Hogan and Rodriguez [6]
investigated the pusher-slider system and proposed a method
to push a single object using model predictive control and
integer programming. Arruda et al. [7] proposed the use of a
learned pushing model and model predictive control to push
a single object to a goal location.

Clutter is another challenge that we encounter during ma-
nipulation. Stilman et al. [18], investigated the manipulation
planning amongst movable obstacles problem. More recently,
Haustein et al. [19] considered the rearrangement planning
problem as a search for dynamic transitions between stati-
cally stable states in the joint configuration space. Dogar et
al. [3] proposed a framework for push-grasping in clutter,
where a grasp approach trajectory is planned by keeping
track of movable objects in the environment. Srivastava et
al. [20] integrated a symbolic high-level planner with low-
level kinematic trajectory optimization to manipulate objects
in clutter. Laskey et al. [21] proposed the use of a hierarchy
of supervisors for learning from demonstrations in order to
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Fig. 7: Top row: Naive re-planning (no added uncertainty) fails to grasp the target. Bottom row: Online re-planning succeeds.

grasp an object in clutter. Ratliff et al. [22] and Schulman et
al. [23] present planners that avoid contact with objects in the
environment as they generate plans. Recently, Kitaev et al.
[1] proposed physics-based trajectory optimization to handle
the clutter-grasping problem. They use the iterative LQR
method and define an objective function related to the clutter
manipulation problem. As mentioned before, we address a
similar problem but different from the literature, we take a
closed-loop approach.

VI. DISCUSSION AND FUTURE WORK

To the best of our knowledge, this is the first work that
shows how a robot can complete physics-based manipulation
in clutter with online planning in real time. Our problem set-
up includes many simplifications though. Most importantly,
we do not consider static obstacles which may create jam-
ming effects between the robot and the objects. In future
work, we plan to address this problem, by extending our
planner to handle static boundaries and jamming.
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