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Abstract— This paper proposes a control strategy for the sta-
bilization of a jet-powered flying humanoid robot. In particular,
the contribution of the paper concerns the design of a control
framework capable of tracking a desired robot position and
orientation trajectory while flying. Asymptotic stability of the
closed loop system is shown by means of a Lyapunov analysis.
Simulations are carried out on a model of the humanoid robot
iCub to verify the soundness of the proposed approach.

I. INTRODUCTION

The recent development of complex aerial systems such
as aerial manipulators [1] calls for the design of whole-
body control laws capable of stabilizing the overall system
dynamics while guaranteeing robustness with respect to
external disturbances and modeling errors [2],[3],[4]. This
paper takes a step in this direction by developing a whole-
body control framework for stabilizing position and attitude,
i.e. the overall orientation in space, of a jet-powered flying
humanoid robot.

From the modeling and control point of view, the dynamics
of a complex aerial system is, at least theoretically, not far
from the dynamics of other multi-body systems, for example
a humanoid robot, subject to a set of external actuation
forces. Differently from the other aerial systems, a jet-
powered humanoid robot would also be capable to perform
legged locomotion, that may be more energetically efficient
than flying especially when operating in confined spaces. On
the other hand, a humanoid robot that is endowed with the
capability of flying may have an advantage with respect to
other walking robots in terms of speed of travel and energy
consumption on rough terrain or when the operating area is
vast. For this reason we believe there may be a technological
benefit in developing a single platform capable to both fly
and walk.

There is a wide and rich literature concerning the control
of aerial systems [5],[6]. Researchers focused in particular on
ensuring stability properties and robustness while performing
manipulation tasks or in case of a propeller failure [7],[8].
One possibility is to apply linear control techniques based
on linear approximation of the system’s dynamics, but on
the other hand nonlinear controllers can guarantee more ro-
bustness to external disturbances and unmodeled phenomena,
especially in presence of highly nonlinear dynamical systems
[9],[10]. Another widely used control strategy is the so-called
vectored-thrust paradigm, that exploits the coupling between
the vehicle’s position and attitude dynamics. In particular,
the robot’s attitude together with the thrust force magnitude
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Fig. 1. The jet-powered humanoid robot. The base frame B is attached to
the robot’s base link.

are used as control inputs to first stabilize the robot position
along the desired trajectory. Then, the attitude is stabilized
towards the desired values by means of backstepping or high
gains control approach. Eventual actuation redundancy is
finally exploited, for example, for tracking a desired robot’s
orientation [9],[11].

Concerning instead humanoid robots, to assume that the
robot is always attached to the ground may be a limitation
for achieving tasks such as walking. An alternative solution
is to make use of the floating base formalism, that does not
assume any of the robot’s links to have an a priori constant
pose with respect to an inertial reference frame [12]. An
effective technique for controlling floating base robots with
rigid joints is the operational space control, where the control
objective is often the stabilization of the robot centroidal
momentum [13]. The controllers designed for this objective
are usually referred to as momentum-based controllers [14].
To get rid of the (eventual) actuation redundancy associated
with momentum control, a lower priority task is usually
added during the stabilization of the robot momentum.
This secondary task aims at imposing a desired joint robot
configuration, and plays a pivotal role for the stabilization of
the system’s zero dynamics [15].

In a previous work, we proposed a momentum-based strat-
egy for controlling a flying humanoid robot [16]. However,
one of the main drawbacks of controlling the momentum is
that in general it cannot be associated with a quantity that
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somehow represents the overall orientation of the system
in space, and therefore it may not be easy to achieve a
good attitude tracking, which is fundamental for performing
complex maneuvers while flying. The contribution of this
paper is the development of a task-based control algorithm
for position and attitude stabilization of complex multi-body
flying systems, and its implementation on a novel platform,
that is, a jet-powered humanoid robot. The proposed algo-
rithm ensures global tracking of the robot’s center of mass
position, and local asymptotic tracking of the attitude trajec-
tory. Other important control objectives such as performing
take off and landing or achieving manipulation tasks while
flying may require further modifications and improvements
of the proposed control algorithm and will be addressed in
future works.

The remainder of the paper is organized as follows: Sec
II recalls notation, system modeling, and the momentum-
based control strategy for flying proposed in [16]. In Section
III, the task-based control for position and attitude tracking
is presented. Simulation results on the robot iCub [17]
are presented in Section IV. Conclusions and perspectives
conclude the paper.

II. BACKGROUND

A. Notation

1) I denotes an inertial frame of reference, with its z
axis pointing against the gravity. B denotes the base
frame, i.e. a frame attached to the robot base link. G[I]
denotes a frame with the origin at the robot center of
mass, and the same orientation of the inertial frame.
G[B] is a frame with the origin at the robot center of
mass, and the orientation of the base frame.

2) 1n ∈ Rn×n is the identity matrix of dimension n.
0n×m ∈ Rn×m is the zero matrix of size n×m.

3) S(x) ∈ R3×3 is the skew symmetric matrix such that
S(x)y = x × y, where × denotes the cross product
operator in R3.

4) skew(A) ∈ R3×3 is the skew symmetric matrix such
that skew(A) = A−A>

2 , with A ∈ R3×3.
5) (�)∨ is the operator defined by x = S(x)∨.

B. Robot Modelling

The humanoid robot can be modeled as a multi-body sys-
tem, composed of n+1 rigid bodies, usually referred as links,
connected by n one degree of freedom joints. Following up
the floating base formalism, the system’s configuration space
is defined as Q ∈ R3 × SO(3) × Rn. An element of Q is
given by the following triplet: q = (IoB,

IRB, s), where
(IoB,

IRB) represents the position and orientation of the
base frame B expressed in the inertial frame, while s ∈ Rn

denotes the internal joint angles. The velocity of the system
is characterized by the set V ∈ R3 × R3 × Rn. An element
of V is given by ν = (vB, ṡ) where vB = (I ȯB,

I ωB) is
the linear and angular velocity of the base frame w.r.t. the
inertial frame, while ṡ are the joint velocities. We recall that
the base angular velocity satisfies IṘB = S(IωB)IRB.

We now apply the Euler-Poincaré formalism [18, Ch. 13.5]
to write the system’s equations of motion:

M(q)ν̇ + C(q, ν)ν +G(q) =

[
06
τ

]
+

m∑
k=1

J>k Fk (1)

where M,C ∈ Rn+6×n+6 are the mass and Coriolis matrix,
G ∈ Rn+6 is the gravity vector, τ ∈ Rn are the internal
actuation torques.

We assume that the robot is powered by m = 4 thrust
forces, located on the robot’s end effectors as in Fig. 1.
Each Fk in Eq. (1) represents the thrust force applied on
the robot by the k − th jet. In particular, Fk = I lk(q)Tk,
where I lk ∈ R3 is the thrust direction, and Tk ∈ R the thrust
magnitude. The thrust directions move accordingly with the
robot’s joints, while each thrust intensity can be regulated
by controlling its rate of change Ṫk. The jacobian Jk(q)
is the map between the system’s velocity ν and the linear
velocity I ȯk of the k−th thrust application point. Lastly, by
defining T := (T1, T2, T3, T4)>, we can compactly rewrite
f(q, T ) =

∑m
k=1 J

>
k Fk.

C. Recalls on the Momentum-Based Flying Controller

We summarize now the momentum-based control strategy
for flying presented in our previous work. The key point
is to recall that the rate of change of the robot centroidal
momentum (i.e., the robot’s total momentum expressed w.r.t.
the aforementioned frame G[I]) equals the summation of all
the external forces and moments acting on the system, that
in the case study are the thrust forces and the gravity force.
The centroidal momentum dynamics is then given by:

G[I]ḣ = A(q)T −mge3 (2)

where we define:

e3 = (0, 0, 1, 0, 0, 0)>

A(q) =
(
S̄(r1)I l1, ..., S̄(rm)I lm

)
ri = Ioi −I oG , ∀i ∈ (1, ...m)

S̄(ri) =

(
13
S(ri)

)
IoG ∈ R3 is the center of mass position. In this Section, we
omit the superscript G[I] unless it is necessary to explicitly
write it for the sake of clarity, and we write G[I]ḣ = ḣ.
The goal is to design a control algorithm for stabilizing
the momentum dynamics along a reference trajectory hd(t).
The advantage on controlling Eq. (2) w.r.t., for example, the
acceleration of a generic frame v̇t = v̇t(q, ν, τ, T ) associated
with one of the robot links, resides in its independence from
the joint velocities ṡ and torques τ . This clearly identifies
the key role of the thrust forces in the stabilization of
the underactuated part of system (1), i.e. the floating base
dynamics. More precisely, define the momentum error h̃ =

h−hd. Then, at the equilibrium configuration (h̃,
˙̃
h) = (0, 0)

the effect of the thrust forces must oppose the gravity plus
the term ḣd(t), i.e.:

0 = A(q)T −mge3 − ḣd(t). (3)
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Reminiscent of the vectored-thrust paradigm [9], we may
think of using the joint velocities ṡ and the thrusts rate of
change Ṫ to align the total thrust force A(q)T to the gravity
and the desired momentum rate of change effect. Therefore
we make the following assumption:

Assumption 1: the joint velocities ṡ := u2 and the
thrust rate of change Ṫ := u1 can be chosen at will and
then considered as control inputs. In particular, the joint
velocities may be stabilized towards the desired values by
means of a low-level joint velocity control loop. Otherwise,
the joint velocity dynamics can be controlled by properly
choosing the joint torques τ .

More generally, we define:

ξ̃ = A(q)T + F,

F := −mge3 − ḣd +KDh̃+KP I(t)

with KP ,KD ∈ R6×6 two symmetric and positive definite
matrices. The variable I(t) represents the integral of h̃. Then,
we rewrite Eq. (2) as follows:

İ = h̃ (4a)
˙̃
h = ξ̃ −KDh̃−KP I (4b)
˙̃
ξ = Au1 + Λsu2 + ΛbvB − ḧd +KD

˙̃
h+KP h̃ (4c)

where matrix A is given by Eq. (2), while:

Λb := Λ

(
16

0n×6

)
,Λs := Λ

(
06×n
1n

)
Λ := −

(
S̃1, ..., S̃m

)
Jr

S̃i := Ti

(
03 S(I li)

S(I li) S(ri)S(I li)

)
and Jr ∈ R6m×n+6 the jacobian mapping the system ve-
locity ν into the velocities Ω :=

(
ṙ1, ω1, ...ṙm, ωm

)
∈ R6m,

where ωi ∈ R3 is the angular velocity associated with a
frame attached to the i− th thrust application point.

In our previous work, we managed to define the conditions
for the existence of a smooth control input (u1, u2) such that
the closed loop equilibrium point (I, h̃, ξ̃) = (0, 0, 0) of the
system (4) is globally asymptotically stable. In particular,
recall that the centroidal momentum is linear versus the
robot velocity ν, i.e. h = (JBh , J

s
h)ν = JBh vB + Js

hṡ. The
matrix Jh(q) = (JBh , J

s
h) is usually referred as the centroidal

momentum matrix [13]. Then, define:

σ := (Λb + K̃JBh )vB + (KD + 13)
˙̃
h+KP I − ḧd − K̃hd

B := Λs + K̃Js
h

K̃ := KP +KD +K−1O

with KO ∈ R6×6 a symmetric and positive definite matrix.
If there exist (u1, u2) such that:

σ +Au1 +Bu2 = 06, (5)

then the closed loop equilibrium point (I, h̃, ξ̃) = (0, 0, 0) is
globally asymptotically stable. The proof has been presented

in [16]. In particular, as long as rank(
[
A B

]
) = 6 a solution

to Eq. (5) always exists. Also, being the control input of
dimension (u1, u2) ∈ Rn+m, one is left with a redundancy
of dimension n+m−6. We exploit this redundancy to attempt
the stabilization of the system’s zero dynamics by defining a
postural task of the form:

p := −Kp
P (s− sr) (6)

where Kp
P ∈ Rn×n a symmetric and positive definite matrix

and sr ∈ Rn a reference position for the joints configuration.
The tasks (5)-(6) can be combined in a weighted optimization
problem as follows:

(u∗1, u
∗
2) = argmin(λp|u2 − p|2 + λm|σ +Au1 +Bu2|2

(u1,u2) + λs|u2|2 + u>1 Wu1) (7a)
s.t.

lb1 < u1 < ub1, lb2 < u2 < ub2 (7b)

with λp, λm, λs positive weighting constants and W ∈
Rm×m a positive weighting matrix. To better understand
if the control objectives could be also achieved on a real
platform, we relaxed Assumption 1 by limiting the inputs
u1 and u2. lb1, ub1 and lb2, ub2 are the lower and upper
bounds of u1 and u2, respectively. The cost function (7a)
also contains regularization terms depending on u1 and u2.

The solution to the problem (7) is the pair (u∗1, u
∗
2), i.e.

the instantaneous rate of change of the thrust intensities Ṫ ∗

and the joint velocities ṡ∗ In case the actual control input
of system (1) are the joint torques τ , we interpret ṡ∗ as a
desired value for the joint velocities to be stabilized by a
torque-control law. More precisely, we partition Eq. (1) as
follows:

M =

(
MB MBs
M>Bs Ms

)

b :=

(
bB
bs

)
= Cν +G

f(q, T ) =

(
fB
fs

)
with MB ∈ R6×6, MBs ∈ R6×n, Ms ∈ Rn×n, bB, fB ∈
R6 and bs, fs ∈ Rn. It is now possible to isolate the joints
dynamics from Eq. (1), which yields:

M̄ss̈+ b̄ = τ (8)

where we defined M̄s := Ms−M>BsM
−1
B MBs and b̄ := bs−

fs+M>BsM
−1
B (fB−bB). In view of Eq. (8), the stabilization

of the desired joint velocities may be attempted by applying
the following high-gain control law:

τ = b̄− M̄s

(
Ks

P (ṡ− ṡ∗) +Ks
I

∫ t

0
(ṡ− ṡ∗)dt

)
. (9)

D. Complements on Attitude Stabilization

One of the main limitations of the control law (5)-(9) is
that it does not guarantee good performances for tracking
a desired robot attitude. More precisely, the angular mo-
mentum of a rigid multi-body system is given by G[I]hω =
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G[I]I Iωo where G[I]I(q) ∈ R3×3 is the total robot’s inertia
expressed in the frame G[I] and Iωo ∈ R3 is the so-called
locked (or average) angular velocity [13]. When all the joint
velocities are locked (ṡ = 0), Iωo represents the angular
velocity of the robot, that now behaves as a single rigid body.
However, in general Iωo is not associated with the derivative
of a rotation matrix IRo somehow representing the overall
robot orientation in space. There are precise conditions for
the existence of such matrix, that are not guaranteed to be
always satisfied for the case under study [19].

To overcome this limitation, the solution proposed in our
previous work was to rewrite the integral of the angular
momentum error Iω ∈ R3 := I = (Il, Iω)> in order to
take into account an orientation correction term of the form:

Iω = G[I]I(q)(skew(IRBR
>
d )∨). (10)

where IRB ∈ SO(3) represents the base frame orienta-
tion. The particular form of Eq. (10) is derived as follows.
Assume that the angular velocity ω can be used as a control
input of the dynamics Ṙ = S(ω)R. Then, a choice of ω that
guarantees singularity free control laws and the quasi-global
stability of the equilibrium point R = Rd is [20, Sec 5.11.6]:

ω = −k(skew(RR>d )∨), k > 0. (11)

Errata Corrige: the equations (19)-(20) presented in [16,
Sec 3E] both contain the term skew(R>d R)∨. However,
if the orientation dynamics is defined as Ṙ = S(ω)R the
correct formulation is skew(RR>d )∨.

We recall that Iωo is not related to the derivative of IRB
and therefore the asymptotic stability of (5)-(9) with Iω as in
(10) is not guaranteed anymore. Furthermore, this approach
assumes Rd to be constant and it didn’t show good tracking
performances when Rd = Rd(t).

III. TASK-BASED CONTROL

This section proposes a task-based control approach de-
rived from the momentum-based flying control presented in
Sec. II, that allows the stabilization robot base frame rotation
IRB ∈ SO(3) towards desired values Rd(t).

The key point is to observe that the locked angular velocity
can be expressed as a linear function of the joint velocities
and the base velocity [21]. In particular:

Iωo = IωB + Js
ω ṡ, (12)

where IωB is the base angular velocity in the inertial
frame and Js

ω ∈ R3×n maps the joint velocities into the
locked angular velocity. Therefore, the angular momentum
in centroidal coordinates is given by:

G[I]hω = G[I]I(q)IωB + G[I]I(q)Js
ω(q)ṡ, (13)

Assume that the joint velocities can be considered as control
input, i.e. ṡ = u2. Then, one may think of choosing u2 to
instantly influence the angular momentum equation Eq. (13),
in order to impose G[I]hω = G[I]h∗ω .

The effectiveness of this approach strongly depends on
the feasibility of the desired angular momentum G[I]h∗ω . In

particular, it must be verified that for the given choice of
G[I]h∗ω the matrix Js

ω(q) never looses rank while executing
the task. Without loss of generality, we can express the
angular momentum w.r.t. the frame G[B], by multiplying Eq.
(13) times the rotation matrix BRI :

G[B]hω = G[B]IBωB + J̄s
ω ṡ, (14)

where G[B]I = BRI
IIIRB is the total inertia matrix in

the new coordinates, BωB the angular velocity in base
coordinates and J̄s

ω = BRI
G[I]I(q)Js

ω(q).
We design the desired angular momentum expressed in
G[B] frame to be:

G[B]h∗ω = G[B]I0BωB, (15)

with G[B]I0 = G[B]I(t = 0). The main advantage of perform-
ing this change of coordinates and of choosing G[B]h∗ω as in
(15) is that, being the base frame B attached to the robot, the
inertia matrix G[B]I only depends on the joints configuration,
i.e. G[B]I = G[B]I(s). While the robot is flying, the position
of most of the joints only has small and smooth changes
with respect to the initial robot configuration. This is true
in particular for the joints associated to the links that mostly
contributes to the robot’s total inertia, such as the robot chest
and upper legs. It is possible to verify numerically that for
the case study the inertia rate of change is G[B]İ ≈ 03, and
therefore the constraint applied with Eq. (15) is not far from
the system’s original behavior.

The joint velocities satisfying (15) are given by:

u2 = (J̄s
ω)†(G[B]I0 − G[B]I(s))BωB +Ns

ωu3, (16)

where (J̄s
ω)† is the Moore-Penrose pseudoinverse of

matrix J̄s
ω and Ns

ω ∈ Rn×n is the projector into its null
space. u3 ∈ Rn is a free variable. Now that we achieved
G[B]hω = G[B]h∗ω , we make use of the angular momentum
acceleration G[B]ḧω = G[B]I0Bω̈B to control the base
orientation dynamics. In particular:

Lemma 1: Consider the following system:

IṘB = IRBS(BωB) (17a)
G[B]ḣω = G[B]I0Bω̇B (17b)
G[B]ḧω = G[B]ḧ∗ω, (17c)

and assume that the angular momentum acceleration
G[B]ḧ∗ω ∈ R3 can be chosen at will. Apply the control law

G[B]ḧ∗ω = G[B]ḧdω − (13 + c0
G[B]I−10 )G[B]

˙̃
hω + (18a)

− c1G[B]I−10
G[B]h̃ω − ˙skv − coG[B]I−10 skv,

with:
skv = skew(R>d

IRB)∨, (18b)
G[B]h̃ω = G[B]hω − G[B]hdω, c0, c1 ∈ R+ (18c)

to system (17). Then, the closed loop equilibrium
(G[B]ḣω,

G[B]hω,
IRB) = (G[B]ḣdω(t), G[B]hdω(t), Rd(t)) is lo-

cally asymptotically stable.
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The proof is given in the Appendix. Now, the angular
momentum acceleration G[B]ḧ∗ω that stabilizes the base ori-
entation and angular momentum dynamics can be achieved
by resorting to the remaining free joint velocities u3 and the
thrust intensities rate of change Ṫ = u1. Similarly to Eq. (4)
in Sec. II C, we define the following dynamical system:

İl = h̃l (19a)
˙̃
hl = ξ̃l −KDlh̃l −KPlIl (19b)
˙̃
ξl = [13, 03](Au1 + ΛsN

s
ωu3 + λbias + ΛbvB) +

− ḧdl +KDl
˙̃
hl +KPlh̃l (19c)

G[I]ḧω = [03, 13](Au1 + ΛsN
s
ωu3 + λbias + ΛbvB) (19d)

where the equations (19a)-(19b)-(19c) correspond to the
first three rows of (4a)-(4b)-(4c), respectively, and represent
the linear momentum dynamics. Eq. (19d) is the angular
momentum dynamics and can be obtained by selecting the
last three rows of the first three elements on the right-
hand side of Eq. (4c). In both Eq. (19c) and (19d) we
also substituted u2 with its expression from Eq. (16). This
implies Λsu2 = Λs[(J̄

s
ω)†(G[B]I0− G[B]I(s))BωB+Ns

ωu3] =
ΛsN

s
ωu3 + λbias.

A control input (u1, u3) that stabilizes system (19) towards
the closed loop equilibrium point (Il, h̃l, ξ̃l) = (0, 0, 0) while
also ensuring G[I]ḧω = G[I]ḧ∗ω must satisfy the following
equivalence:

σ̄ +Au1 + B̄u3 = 06 (20)

with A(q) as in Eq. (5), while B̄, σ̄ must be recomputed as:

σ̄ =

[
[13, 03](σ + λbias + γbias)

[03, 13](λbias + ΛbvB)− G[I]ḧ∗ω

]

B̄ =

[
[13, 03](ΛsN

s
ω + K̃Js

hN
s
ω)

[03, 13](ΛsN
s
ω).

]
γbias = K̃Js

h(J̄s
ω)†(G[B]I0 − G[B]I(s))BωB

Eq. (20) is equivalent to Eq. (5) presented in Sec. II C. As
before, as long as rank(

[
A B̄

]
) = 6, a solution to Eq.

(20) always exists. Furthermore, it is still possible to apply
Eq. (6) to design the robot’s postural task, and the desired
joint velocities u2 (and consequently u3) can be obtained
by applying the high-gain control technique presented in
Eq. (9). The tasks (6)-(20) can still be combined in the
weighted optimization problem (7).

Remark: the desired angular momentum in centroidal coor-
dinates is obtained using the following relationship: G[I]ḧ∗ω =
IRB

G[B]ḧ∗ω . Furthermore, it can be verified that as long as
Eq. (16) holds, G[I]ḧ∗ω does not depend on the control inputs
ṡ, Ṫ and τ (hence avoiding algebraic loops).

IV. SIMULATION RESULTS

A. Simulation Environment

The algorithm presented in Sec III is implemented in a
Simulink controller interfacing with Gazebo simulator [22].

The controller frequency is 100 [Hz]. Gazebo offers different
physic engines to integrate the system’s dynamics. Among
all the possibilities, we chose the Open Dynamics Engine
(ODE), that uses a fixed step semi-implicit Euler integration
scheme, with a simulation time step of 1 [ms]. An advantage
of using Gazebo consists in the ability to test directly on the
real robot the same control software used in simulation.

B. Performances Comparison

At first, we performed a comparison between the control
law (5)-(9) with the modification presented in Sec. II D
and the task-based control law (18)-(20). Concerning the
constraints on the inputs u1 and u2 in the optimization
problem (7a), we consider |u1| < 100N

s and |u2| < 45deg
s

. At the moment, no bounds on the angular momentum ac-
celeration are considered. We kept equal for both controllers
all the control gains and parameters but the ones that mostly
affect the orientation tracking performances, that are KPω :=

KP =

[
KPl 03
03 KPω

]
for the controller described in Sec.

II and c0, c1 for the task based controller. In particular, we
choose KPω = c213, c2 > 0. Both controllers are required to
track a desired base frame orientation Rd(t). In particular, the
base frame roll, pitch and yaw desired angles are designed as
a chirp signal of the form α = α0 + Am sin(2π(f0t+ k

2 t
2))

with k = 0.0175, Am = 7.5 [deg] and f0 = 0.2 [Hz]. First,
we evaluate the range of c0, c1, c2 that always guarantees a
stable behavior while executing the given task. In particular:

20 < c2 < 60,

30 < c0 < 75,

30 < c1 < 75.

Then, we performed 30 experiments by choosing randomly
the values of c0, c1, c2 in between the stable range. The
results are compared in Fig. 2, that represents the average
norm of the rotation error rot = [roll, pitch, yaw]>. The
semi-transparent colored regions represent the variance of the
error norm over 30 experiments. The task-based controller
shows better tracking performances for all the frequencies
considered in the chirp signal, despite the variance over
the experiments is wider than for the momentum-based
controller. This can be explained by considering that the
closed loop orientation dynamics is affected by the ratio
between c0 and c1, but we chose the two gains independently.
This is anyways a worst-case scenario w.r.t. choosing, for
example, something similar to c1 = 2

√
c0 as for the classical

critically damped systems.

C. Task 1: Orientation Tracking

This task consists in the robot hovering at 5 [m] from the
ground. While hovering, the robot is spinning along the yaw
angle with a spinning speed of 1 [ rad

s ] and it is tracking a
sinusoidal trajectory along both pitch and roll angle with an
amplitude of 15 [deg] and a frequency of 0.25 [Hz]. Figure
3 shows the reference and actual values of the roll, pitch
and yaw angles. Despite the control law (18) is coupling
the roll, pitch and yaw dynamics, it is possible to achieve
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Fig. 2. Norm of the rotation tracking error. The solid lines represent
the average norm over 30 experiments, while the transparent region is the
associated variance.

reasonably good tracking performances along all the three
angles. The coupling of the roll, pitch and yaw dynamics in
the closed loop system may be the responsible of the residual
steady-state errors along the pitch angle. A video showing
the experiment is attached to the paper.

D. Task 2-3: Aggressive Maneuvers

We tested the effectiveness of the task-based control
while performing aggressive maneuvers. In particular, Task
2 consists in the humanoid robot flying at 30 [kmh ], with
a constant pitch orientation of −60 [deg]. The robot has
to suddenly stop and bring its velocity to zero in 5 [s].
Furthermore, it also has to bring the pitch angle to zero,
and, after two seconds, rotate along the yaw angle by 90
[deg]. During Task 3, the robot is flying at 30 [kmh ] along
the x CoM direction, with a constant pitch orientation of
−60 [deg]. Then, it has to turn by 90 [deg] and fly along
the y CoM direction, always at 30 [kmh ]. Meanwhile turning,
the yaw angle must be updated in order to keep the robot
head always parallel to the flying direction. The pitch angle
must remain constant at −60 [deg]. The turning maneuver
happens in 5 [s]. Figures 4-6 represent the pitch and yaw
references and actual values during Tasks 2-3. The actual
values remain close to the references, despite the robot is
performing aggressive tasks. Figure 5 shows the thrust forces
magnitude required for achieving Task 2, that resulted to be
the most challenging of the three tasks under consideration.
The robot weight, including the turbines, is around 40 [kg].
The turbines weight is that of the commercial products JetCat
P130-RX (max thrust 130 [N]) and JetCat P220-RXi (max
thrust 220 [N]), that can also achieve the required thrust
magnitude. A video showing the experiments is attached to
the paper.

Finally, in Fig. 7 we compared the center of mass error
along the directions [x, y, z] during the three tasks. It is
possible to observe that during Task 1-3 the CoM error
remain small along all directions, with a magnitude smaller
than 0.06 [m]. During Task 2 there is a peak of 0.3 and −0.15
[m] of error along the x and z directions, corresponding to
the instant the robot performs the stop from 30 to 0 [kmh ].
However, after few seconds stability is recovered and the

Fig. 3. Reference and actual base orientation while performing Task 1.
The closed loop system shows good tracking performances for all the three
angles.

error rapidly decreases.

E. Feasibility of the Angular Momentum Constraint

We verified that the matrix J̄s
ω remains full rank during all

the tasks, that is the condition that guarantees that the angular
momentum can be instantly regulated by (16). In particular,
we performed a Singular Value Decomposition analysis on
matrix J̄s

ω . Both the average and the variance of the singular
values [σ1, σ2, σ3] remained the same during all three tasks.
in particular, [σavg

1 , σavg
2 , σavg

3 ] = [1.2, 1.15, 0.45] while
the variance is:

1.3 < σ1 < 1.15,

1.2 < σ2 < 1.1,

0.35 < σ3 < 0.55.

Numerical results therefore show that achieving Eq. (15) is
always possible during the three tasks.

V. CONCLUSIONS

In this paper, a task-based control for the stabilization of a
jet-powered flying humanoid robot is proposed. The control
algorithm can guarantee global tracking of a desired CoM
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Fig. 4. Reference and actual pitch and yaw angles while performing Task
2. Despite the aggressive maneuver, the closed loop system still shows good
tracking performances.
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Fig. 5. Thrust forces magnitude while performing Task2 (the most
challenging task).

position, and local asymptotic stabilization of a reference
attitude trajectory. Tests in a simulation environment with
the humanoid robot iCub and performances comparisons
with a different control approach verify the soundness of
the proposed algorithm.

Nevertheless, throughout the paper we made several as-
sumptions, such as neglecting the aerodynamics effects and
the jets’ own dynamics. Also the take-off and landing phases,
which are not considered in this work, have shown to be
critical, and may require a dedicated control design. An
analysis of the maximum load acting on the robot joints
while flying is also required. Finally, further modifications
of the proposed control algorithm are necessary in order
to perform manipulation tasks while flying. Future work
may address these issues in order to lead to a practical
implementation of the control algorithm on the real robotic
platform iCub.

VI. APPENDIX

A. Proof of Lemma 1

For the sake of clarity we omit the subscripts and super-
scripts and we define R = IRB, h̃ω = G[B]h̃ω , ω = BωB,
I−10 = G[B]I−10 . Now, consider the following Lyapunov

Fig. 6. Reference and actual pitch and yaw angles while performing Task
3. Despite the aggressive maneuver, the closed loop system still shows good
tracking performances.

function candidate:

V = V1 + V2 + V3, (21)

V1 =
c0 + c1

2
tr(13 −R>d R),

V2 =
c0 + c1

2
h̃>ω I

−1
0 h̃ω,

V3 =
1

2
| ˙̃hω + h̃ω + skv|2.

It is possible to verify that (21) is a valid Lyapunov function
candidate. The term V1 is always positive, and it is zero iif
R = Rd (see also [20, Sec 5.11.6]). Recall I−10 is symmetric
and positive definite. Then, V2 is always positive and V2 = 0
iif h̃ω = 0. The last term V3 is always positive and it has
several solutions such that V3 = 0, but the only one that
guarantees also V1 and V2 to be zero is R = Rd, h̃ω =

0,
˙̃
hω = 0 (in particular, recall that skv(R = Rd) = 0).

Therefore one has V ≥ 0, V = 0 iif R = Rd, h̃ω = 0,
˙̃
hω =

0. The time derivative of V is given by:

V̇ = V̇1 + V̇2 + V̇3, (22)
V̇1 = (c0 + c1) h̃>ω I

−1
0 skv,

V̇2 = (c0 + c1) h̃>ω I
−1
0

˙̃
hω,

V̇3 = (
˙̃
hω + h̃ω + skv)>(

¨̃
hω +

˙̃
hω + ˙skv).

The derivatives V̇2 and V̇3 are straightforward to compute,
while the derivative V̇1 can be obtained by recalling that
d(tr(13−R>

d R))
dt = 2ω̃>skv(R,Rd) with ω̃ = ω−ωd (see also

[20, Sec 5.11.6]). Also, if Eq. (15) holds, then ω̃ = I−10 h̃ω ,
which in turns leads to (22).

Direct substitution of ḧω from Eq. (18) into V̇ gives, after
long but straightforward calculations:

V̇ = − c1h̃>ω I−10 h̃ω + (23)

− c0(
˙̃
h>ω I

−1
0

˙̃
hω + skv>I−10 skv + 2

˙̃
h>ω I

−1
0 skv)

= − c1h̃>ω I−10 h̃ω − c0(
˙̃
hω + skv)>I−10 (

˙̃
hω + skv)

Being I−10 symmetric and positive definite, one has V̇ ≤ 0.
In particular it holds that:

1) V̇ ≤ 0 implies that h̃ and ˙̃
h are bounded, being V a

non-increasing function (R is bounded by definition);
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Fig. 7. CoM error during Tasks 1-2-3. The error remains bounded also
during the most aggressive task (task 2).

2) V̈ is bounded because of 1) and because of the choice
of ¨̃
h as in (18);

3) following the Barbalat’s Lemma, V̈ bounded implies
that V̇ → 0;

4) V̇ → 0 implies h̃→ 0 and (
˙̃
h+ skv)→ 0;

5) being ¨̃
h bounded, then ˙̃

h→ 0;
6) finally, because of 4) and 5) one has that also skv → 0

and this implies the local convergence of R → Rd as
detailed in [20, Sec 5.11.6].
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