
Sample-efficient learning of soft task priorities through
Bayesian optimization.

Yinyin Su1, Yuquan Wang1∗ and Abderrahmane Kheddar 2

Abstract— In recent optimization task-space controller, hier-
archical task prioritization can be made strict or soft within a
given level. Soft hierachization is made using task weighting.
Yet the latter is not automated and weights are set ad-hoc.
This empirical approach could be time-consuming and even
leads to an infeasible result. During a specific episode in order
to approximate the evolution of the weight of a task, we assign
a Radial basis function network(RBFN) to each of the tasks.
We use the Bayesian Optimization procedure to regulate the
RBFNs corresponding to different tasks based on performances
indexes that are extracted for a fixed episode. We benchmark
the proposed solution with a dual-arm manipulation simulation
where multiple potentially conflicting tasks are involved. First of
all We can find that the proposed approach outperforms a hand-
tuned controller in terms of tracking errors. In comparison
with tuning the weights using another stochastic optimization
technique, i.e. CMA-ES, we can find that the proposed approach
requires much less samples to evaluate.

I. INTRODUCTION

Using optimization-based formulations, we can develop
reactive robot controllers that could simultaneously satisfy
multiple tasks and objectives in a modular way. Incorporating
multiple objectives into a unified minimization or maximiza-
tion index normally requires a scalarization procedure, where
we assign a weight to different tasks and objectives. Ideally
the weight should be selected according to an underlying
value function. However the value function is typically
unknown and difficult to estimate [1]. This leads to the fact
that robot task programming usually requires an experienced
human decision maker to select weights from different trials
case-by-case.

When there are successful implementation examples to
learn from, we can apply the different learning techniques.
For instance, we can try to extract task constraints from
demonstrations, see [2]. We can learn the mapping between
the observed motor primitive and the joint torque [3]. When
there are multiple prioritized motor primitives, we can use
the redundancy of a robot arm to simultaneously fulfill the
prioritized motor primitives. Basically we can modify the
motor primitive with a lower priority to ensure the motor
primitive with a higher priority. Or we can directly learn the

This paper is partially supported by the National Key Research and
Development Program of China(Project No.2017YFB1303702)the National
Natural Science Foundation of China (grant No: U1613216), the State Joint
Engineering Lab on Robotics and Intelligent Manufacturing, and Shenzhen
Engineering Lab on Robotics and Intelligent Manufacturing, from Shenzhen
Gov, China.

1Institute of Robotics and Intelligent Manufacturing, The Chinese Uni-
versity of Hong Kong, Shenzhen, China.

1∗Corresponding author. email: yuquan@kth.se
2 Interactive Digital Humans (IDH) CNRS-UM LIRMM at Montpellier,

France

null space projection matrices from human demonstrations,
see [4]. However in case of reactive control, we are in lack
of successful examples, therefore we need to resort to other
techniques.

In the context of learning, a hyperparameter optimization
algorithm chooses a proper set of parameters for a specific
learning algorithm. As reported by[5], [6] and [7], among dif-
ferent tuning algorithms: grid search, Bayesian optimization,
random search and gradient-based optimization, Bayesian
optimization is a sample-efficient and computationally af-
fordable approach. Bayesian Optimization builds a surrogate
model for the cost function being optimized using data
points sampled so far.Based on this surrogate, it predicts
the expected cost of points that have not been sampled yet.
Then it does an auxiliary maximization of the acquisition
function to find the next point to be sampled. It is an effec-
tive framework for optimizing objective functions without
knowing its gradient using very few iterations. Reported by
[8], we can apply constrained Bayesian optimization to tune
the controller gains of individual tasks that are specified in a
hybrid controller. As presented in [9], parameters of a Linear
Quadratic Regulator (LQR) problem are obtained in an data-
efficient way by global Bayesian optimization through the
Entropy Search algorithm. The safe Bayesian optimization
introduced in [10] restricts the cost function to a safe set
such that it optimizes the controller parameters of a quadrotor
while keeping the safety constraints.

Alternative to Bayesian Optimization, we can apply ge-
netic algorithms to parameter tuning problems. The Covari-
ance Matrix Adaption Evolution Strategy (CMA-ES), which
is a black-box learning algorithm, is proposed to solve for
the task priorities in [11]. In another modified version [12]
(1+1)-CMA-ES, the constraint satisfaction is explicitly con-
sidered. However as a generic algorithm typically requires a
considerably big population size to search for, both (1+1)-
CMA-ES and CMA-ES require way more iterations than
Bayesian Optimization. More details can be found later in
the benchmark results in Section IV.

Recently, the deep reinforcement learning algorithm, i.e.
Deep Deterministic Policy Gradient (DDPG) [13] is also
introduced to optimizing policy parameters over a continuous
state-action space. Due to the use of replay butter, batch
normalization and two target networks, DDPG can converge
stably and quickly. However, DDPG itself also relies on a
good amount of hyperparameters, e.g. the layers of networks,
the numbers of neurons in layers, the size of batch size,
the reply buffer data management. While optimizing the
controller weights, the newly introduced hyperparameters are

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7282-2/18/$31.00 ©2018 IEEE 938

not easy to define. Sometimes it even leads to divergence.
More importantly, training a deep neural network typically
requires even more samples. This is critical for evaluating
an expensive process.

If we want to apply Bayesian Optimization to tune the
weights of an reactive robot control problem, we need to re-
formulate the reactive control problem such that a stationary
process is available for us to evaluate. For hyperparameter
tuning problems, or even optimization problems in general,
it is normally assumed that the process, so as the underlying
value function, is stationary, otherwise we need to track a
dynamic optimality point. The stationary process assumption
makes it difficult to directly apply stochastic optimization
techniques to a reactive controller online. Rather, people
try to define a certain time interval during which the robot
performance is measured by a cumulative measure, see [11]
and [12]. Or in other words, the performance is measured
on a trajectory level instead of on a reactive level, see [14].
Following the examples from [11] and [12], we use RBFN
to approximate the evolution of the weights of different
tasks and extract performance indexes with respect to a
certain episode. The relation between the episodic perfor-
mance indexes and the RBFN parameters is nonlinear and
in lack of an analytic gradient. We use Gaussian Process
as a surrogate model to replace it and use the expected
improvement acquisition function to sample the next point.

The rest of paper is organized as follows: We formulate
our problem in Section II, where the reactive controller and
the approximation of the task weights are presented. Then in
Section III, we introduce the proposed Bayesian optimization
procedure in more details. We present the benchmark results
finally in Section IV and draw conclusions and state the
future work in Section V.

II. PROBLEM FORMULATION

As shown in recent publications [15], [16], we can
solve multiple subtasks for a redundant robot in an unified
quadratic programming(QP) formulation. In Section II-A,
we define the soft task priorities as the weights of the
subtasks when we scalarize the objective function. Then in
Section II-B, following the successful examples in [11] and
[12] we model the soft task priorities for a fixed episode
with a normalized RBFN. With this formulation, learning of
the soft task priorities is equivalent to the learning of the
hyperparameters of the corresponding RBFN.

A. Soft task priorities in a QP controller

We can use linearly constrained quadratic programs to de-
scribe complex robot motions, see [17]. Different constraints
and objectives could be used to describe different aspect of
a certain task and each of them could be stabilized with
an individual control Lyapunov function [18]. Normally the
equalities and inequalities are considered as hard constraints
which have higher priorities than the objectives.

Considering an n degrees of freedom robot, we denote the
joint command as u ∈ Rn, where we use the bold symbol
to denote a vector. Suppose Io, Ie and Iie represent the set

The three

equalities
 1 3f q

Relative

orientation
 4f q

Singularity

The obstacles

 5f q

 6f q

tasks
weights

6

5

1 3

4 joints

commands

Robot State

Fitness

Function
QP

Controller`̀

Tasks Controller

Stationary Process RBFN

Surrogate

Model(GP)

Acquisition

Function

Bayes Optimization

Fig. 1 Outline of the proposed frame which holds two loops. The inner
loop is QP controller circle and outer loop enables the optimization of
weights using learning algorithm Bayesian optimization. The RBFN is used
to convert reactive controller to the stationary process.

of objectives, equality constraints and inequality constraints
respectively and the corresponding gradients are available,
we can construct the following QP:

min
u

uTQu+
∑
i∈Io

ωi
∂fi

T

∂u
u+

∑
i∈Iie,Ie

wi‖µi‖2,

s.t.
∂fi

T

∂u
u+ µi ≤ −ki(fi − bi)−

∂fi
∂t

, ∀i ∈ Iie

∂fi
T

∂u
u+ µi = −ki(fi − bi)−

∂fi
∂t

, ∀i ∈ Ie

, (1)

where Q is a diagonal positive definite matrix. It is used
to prioritize each joint and minimize the output tasks of
controller, namely, decrease the use of energy as much as
possible on the premise of better performance of robot. ki, bi
are the positive gains and bounds related to every constraint.

As highlighted by the blue font in (1), we used a slack
variable µi in each constraint fi, ∀i ∈ Ie, Iie and penalize
the weighted sum of the normed slack variables ‖µ‖2, the
weighted sum of joint commands and the gradient of fi, ∀i ∈
Io. In this way, we convert the hard constraints into soft ones,
the soft task weights are wi, ∀i ∈ Ie, Iie.

B. Normalized RBFN

The QP given in (1) is a reactive controller in the sense
that in each time step we solve for the locally optimal joint
command u. The robot joint configuration is dynamic, so
does the constraint fi, ∀i ∈ Ie, Iie. Therefore instead of using
static soft task priorities wi, ∀i ∈ Ie, Iie, Io, we define them
as a function of time: wi(t), ∀i ∈ Ie, Iie, Io.

For a given time interval, we model wi(t) using a radial
basis function network(RBFN). As shown in Fig. 2, the i-th
task weight wi(t) can be modeled as:

ωi = Sigmoid

∑
k

πikΨk(µk, σk, t)∑
k

Ψk(µk, σk, t)

 (2)

where we used nk radial basis functions and πi =
{(πik, σk, µk) |k = 1, . . . , nk}. Each radial basis function

939

t

5 5,

1 1,

2 2,

3 3,

4 4,

1 Task_1

Task_i

Task_n

i

n

11

12

13

14

15

1i

2i

3i

4i

5i

1n

2n

3n

4n

5n

Fig. 2 RBF Network . t denotes the time step of accomplishing the tasks
modeled by RNFN, ωi is the i-th task priority at each time step and πik ,
σk and µk for k = 1, . . . , nk (e.g. nk = 5) are the parameters of RBFN.

has a weight πik, the mean µk and the variance σk as:

Ψk(µk, σk, t) = exp

(
−1

2

(
t− µk

σk

)2
)

(3)

For numerical stability reasons, we use the function
Sigmoid (x) = 1/(1 + exp (−x)) to squash the outputs of
RBFN to range [0, 1]. When the task priority equal to 1, this
task dominate importantly. We use fixed σk and µk for all
the RBFs k = 1, . . . , nk, in every task due to the fact that
this choice would reduce the unknown learning parameters
and improve the rate of convergence, see [11].

Connecting the QP defined by (1) and the RBFN defined
by (2), we can tell that learning a soft task priority wi(t) and
diagonal elements of Q ∈ Rn in (1) is equivalent to learning
the corresponding RBF parameters π in (2). With the fixed
σk and µk for all the RBFs, the total number of parameters
π of an RBFN is: (n+2+dim(Io)+dim(Ie)+dim(Iie))nk.

Suppose in a robotic task, the fitness function φ (qt,ut)
measures the performance for a given time interval t :
0 → T , where qt ∈ Rn and ut ∈ Rn denote the joint
configurations and joint commands at time t. Then the soft
task priority learning is the following minimization problem:

π∗ = argmin
π

φ (qt,ut) (4)

where π∗ denotes the optimal parameters of RBFN when
the robot reach to the final state. In different tasks, the
fitness function φ (qt,ut) could cover different performance
indexes, e.g. energy consumption measures, distance to the
obstacle and so on. We can find a good summary in the
literature, see [19] and [20].

III. PROPOSED METHOD

Using the equivalence between soft task priority learning
and RBFN weights learning, solving for the RBFN param-
eters π from (4) is equivalent to learning the task weights
wi, ∀i ∈ Io, Ie, Iie and Q in (1).

In view of the fact that robotic systems are computation-
ally expensive and time consuming to evaluate, we propose
to use Bayesian Optimization to (4). We can find an overview
of the steps in Fig. 1. Approximating the gradient

∂φ (qt,ut)

∂πi,∀i∈Io,Ie,Iie

(5)

with genetic algorithm is an expensive procedure. Bayesian
optimization offers an alternative way to evaluate it using
a probabilistic approach. The objective function (4) is ap-
proximated with a surrogate model, and then we use an
acquisition function to predict where to explore or exploit
instead of using the gradient (5). In the following we
introduce our particular choice of the surrogate model and the
acquisition function. The acquisition function tells us which
is the next sample xt+1 to explore and the surrogate model
would predict its performance ft+1. After description of the
termination condition, we close this section by summarizing
the proposed method in algorithm 1.

Surrogate model is a probabilistic representation of the
actual target function, i.e. equation (4), using previous or
existing evaluations. It resembles a mapping between the
hyperparameters, e.g.soft task priorities in our case, and the
score, so it could be viewed as a hyper surface. There are
different common options include random forests regression
and Gaussian Process(GP). Grid and random search create a
piecewise constant function which do not fit our continuous
soft task priority tuning problem, therefore we use GP as
our surrogate model.

GP is well-suited to tasks where the objective function
is continuous. It is completely defined by its mean m
and covariance C at a particular configuration x: f (x) ∼
GP (m (x) , C (x,x′)) . It means that instead of returning
the a deterministic scalar value f (x) for input x, the GP
returns the mean and variance of Gaussian distribution over
the target function value at x.

In Bayes optimization, the posterior distribution can be
produced by the Bayes formula of prior P (f) and the
likelihood function P (D|f). So the posterior distribution
is P (f |D) ∝ P (D|f)P (f). The observation data set
D = {x1:t, f1:t} is initialized by the random x1:t and its
corresponding f1:t obtained by the objective function f
coming from the specified case, e.g. the fitness function in
our problem:

f (x) = φ (x) = φ (qt,ut) (6)

where x is the π in equation (4). D could be mod-
eled by GP following the multivariate normal distribution
N (0,C), where C is the kernel matrix. we choose the
element of kernel matrix C(xi,xj) as a Matern 5/2 kernel:
k(r2) =

(
1 +

√
5 r2 + 5 r2

3

)
exp

(
−
√
5 r2

)
, where r2 =

‖xi − xj‖2.It equals to 1 as (xi,xj) get close together
and 0 as they get further apart. This condition highlights
the influence of points in the vicinity, which is crucial for
convergence.

We can derive the posterior predictive distribution using
the Sherman-Morrison-Woodbury formula:

P (ft+1|D1:t,xt+1) ∼ N (µt (xt+1) , σt (xt+1))

In a real system, the noise should be considered. So we
introduce the Gaussian noise ε following ε ∼ N

(
0, σ2

noise

)
940

to transfer the target function. The mean and covariance is:

σ2
t,noise (xt+1) = C (xt+1,xt+1)− CT

(
C + σ2

noiseI
)−1C

µt,noise (xt+1) = CT
(
C + σ2

noiseI
)−1

f1:t
(7)

Acquisition function decides how to explore the uncer-
tainty, so we can balance between exploitation and explo-
ration. We denote an acquisition function as A (·),the next
sampling point xt+1 to be sampled:

xt+1 = argmax
x

A (x/D) (8)

Once xt+1 is defined, we can feed it to (7) to calculate the
posterior predictive distribution.

Among different common acquisition functions, we
choose the Expected Improvement. It is explicit for Gaussian
posteriors and it is greedy which agrees with our goal to
minimize the amount of samples. In particular, we have:

A (x) = max

(
0, µ

(
argmin (f (x))

x

)
− f (x)

)
, where

µ (·) is the posterior mean calculated in (7). To escape
a local objective function minimum, the EI with additive
noise modify their behavior when they estimate that they
are overexploiting an area. Define tr to be the value of
the exploration ratio, if the next predictive point satisfy
σ2
t+1 (xt+1) < trσ

2
noise, the algorithm declares that x is

overexploiting.
Termination condition We introduce two termination

conditions: the maximum episode and limited learning rate.
The algorithm terminates depending on which one would
be triggered first. We terminate if it reaches maximum
iteration Or alternatively the average rate of change ∆f =
1
ω

w∑
j=1

(ft+w+j − ft+j)/w is small enough. w is time win-

dow(several episodes). We terminate when |∆f | ≤ ε.

Algorithm 1 Bayesian optimization algorithm
1: Input: initial variable bounds of RBFN parameters x0

2: Output: the optimal weights of RBFN :x∗

3: Random the points x1:t within given bounds and generate its
evaluations y1:t = f (x1:t) + ε1:t, build up data set D.

4: for generation g = 1, 2, 3, · · · do
5: Update the GP with all data available, P (f |D) ∝∫

P (D|f, θ)P (f)P (θ)dθ
6: select the point x which maximizes the criterion: xt+1 =

argmaxA(x|P (f |D)).
7: compute the next predictive distribution P (ft+1|D,xt+1)
8: Reach the fixed iterations or |∆f | ≤ ε.
9: end for

10: return x∗

IV. SIMULATION VERIFICATION

In this section, we use a pan cleaning task that is described
in Section IV-A as an example to examine the proposed
Algorithm 1. We can tell that the learned soft task priorities
outperform the manually selected ones. More importantly, if
the task changes, e.g. change the relative motion between
the two arms, the learned soft task priorities still give us
satisfactory results. In the comparison with learning soft task

priorities using the CMA-ES, we can tell that the proposed
method uses much less samples.

A. Dual-arm task

We choose two simulated Puma 560 robots, each has 6
degrees of freedom. We use the QP controller formulated in
equation (1) to integrate the subtasks, which are described by
equality or inequality constraints: fi (q) = bi or fi (q) ≤ bi.
In particular, we on purpose choose the following subtasks,
which are potentially conflicting between each other:

a) Relative position task: We use an equality constraint
to define the relative position between the frying pan and the
cleaning utensil:

f1−3(q) = p1(q)− p2(q)− d(t, x1, y1, z1, x2) = b1−3 (9)

where f1−3 is the position tasks along three different axis
xi, yi, zi which are columns of Ri ∈ SO (3). p1 is the center
of fry pan and p2 is the tip position of the cleaning utensil,
d(t, x1, y1, z1, x2) is relative distance between p1 and p2,
which is used to decide the cleaning area of the fry pan.

b) Relative orientation task: We use another inequality
constraint to restrict the relative orientation within a cone:

f4 (q) = xT
1 x2 ≤ b4 (10)

Where x1 is the surface of normal of the fry pan and x2 is
the orientation of tip of cleaning utensil.

c) Avoiding singular configuration task: To guarantee
a healthy transmission ratio between the joint space and the
Cartesian space, namely, avoid the singular joint configura-
tion, we apply the following inequality constraints:

f5 (q) =
−1

2
det
(
JT
i Ji

)
≤ b5, i ∈ {1, 2} (11)

where Ji is the manipulator Jacobian which is related to
translational and rotational motion of the end-effector.

d) Avoiding obstacle task: Avoiding the obstacles can
be formulated in the following inequalities:

f6(q) = ‖p− x0‖ ≤ b6 (12)

where the x0 denotes the obstacle position and p denotes a
point of intersects that belongs to the two manipulators arm
p1 and p2.

e) Joint command minimization task: For a fixed dis-
crete time interval, tk ∈ [0, NT], where NT is number
of control steps (the duration is 25s and control step is
0.2s). We use the following realization of the fitness function
aftermentioned in (4):

φ (qt,ut) = −(

6∑
i=1

NT∑
tk=0

‖bi (tk)− fi (tk)‖2
max

tk∈[0,NT]
‖bi(tk)− fi(tk)‖2

+

NT∑
tk=0

u(tk)
T
u (tk)

max
tk∈[0,NT]

u(tk)Tu(tk)
)

(13)

941

where ‖·‖2 is the L2 norm (Euclidean norm). The first term
of (13) penalizes the cumulated distance to the individual
goal of each subtask. The second term of (13) penalizes the
cumulative sum of the joint command. Both of these two
terms are normalized by its own maximum.

As an example, we choose the parameters in QP controller
(1) as follows: the constraint gain ki are set to 1.0 and bi
for i = 1, . . . , 6. The bound for the relative position equality
constraint is: b1−3 = 0. The bound for the inequality that
constrains the orientation is b4 = − cos (π/12). The bound
constrain the singular configuration value is b5 = 0.005 and
the bound on the distance to obstacle is set to b6 = −0.1.
We set the number of RBF in the RBFN as nk = 5, the
dimensionality of robot is 12, the total of objective and
constraints are 6, so the total parameters in RBFN to be
solved are 100.

B. comparison to hand tuning

We compare the proposed solution to static soft task
priorities that are predefined in an empirical way: wi = 1.0,
for i = 1, · · · , 6. For the joint command minimization, we
choose Qi = 0.15, for i = 1, · · · , 6 for one arm and Qi =
0.90 for i = 7, · · · , 12 for another arm. On the other hand,
we obtained the soft task priorities that are shown in Fig. 3.
In Fig. 4, we can tell that the proposed Bayesian optimization
returns optimal fitness value. After about 100 episodes the
proposed algorithm converges to the optimal fitness value
φ(qt,ut) = −0.2760. On the contrary, through manual
tuning we obtained a fitness value φ(qt,ut) = −0.39.

We can check the performance of each task fi in Fig. 5.
Using the soft task priorities learned by Bayesian algorithm,
the subtask perform smoother.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

times / s

c
o

n
s
tr

a
in

t
w

e
ig

h
ts

Weights Learning

w1

w2

w3

w4

w5

w6

(a) Soft task priorities

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

times / s

o
u

tp
u

t
w

e
ig

h
ts

Weights Learning

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

(b) Weights of the joint command

Fig. 3 The soft task priorities wi and the elements of the matrix Qi are
plotted in (a) and (b), respectively.

C. Constraints modification

We compare the relative trajectory between the two arms
in Fig. 6a, where the two arms are desired to follow a circular
motion. The trajectories obtained using the learned weights
are closer to the ground truth. From Fig. 6b-6d, we changed
the desired motion from a circle to a rectangle, rose and
cardioid, we can find that using the learned priorities,a finer
trajectories can be obtained.

D. Comparison with CMA-ES

Using the same dual-arm task, we compare the perfor-
mance of the proposed method to that of the state-of-the-art

0 100 200 300 400 500
−0.5

−0.47

−0.44

−0.41

−0.38

−0.35

−0.32

−0.29

−0.26

−0.23

−0.2

episodes

fi
tn

e
s
s
 f

u
n

c
ti
o
n

 v
a

lu
e

fitness value using BayesOpt

fitnessvalue−BayesOpt

Average−fitnessvalue−BayesOpt

fitnessvalue−Non−tuning

Fig. 4 This figure shows the comparison between proposed method with
respect to manual tunning. x axis represents the amount of episodes, y
axis represents the fitness value φ. The cyan lines correspond to the fitness
function values by running 10 trials of Algorithm 1 and the blue line is the
average lines.

0 5 10 15 20 25

0

0.1

0.2

0.3

Tool deviation

f
1
−
3

0 5 10 15 20 25

−1

−0.8

−0.6

Tool orientation

f
4
,
b
4
=

−
0
.9
6

0 5 10 15 20 25
−1

0

1

Obstacle avoidance measure, Arm 1

f
5
,
b
5
=

−
0
.1

0 5 10 15 20 25
−1

0

1

Obstacle avoidance measure, Arm 2

f
5
,
b
5
=

−
0
.1

0 5 10 15 20 25
−0.01

0

0.01

Singularity measure, Arm 1

f
6
,
b
6
=

0
.0
0
5

0 5 10 15 20 25
−0.01

0

0.01

Singularity measure, Arm 2

Time [s] (for all the rows)

f
6
,
b
6
=

0
.0
0
5

Fig. 5 Time evolution of fi (q) using different weights. The blue line
indicate the fi that are prioritized by the learned weights and the green one
is prioritized by the predefined weights. The red lines denote the bound bi
for different fi.

soft task priority learning approach CMA-ES [12]. In both
cases, we use the same random initial RBFN parameters.

We run 10 trials for both cases and plot the average fitness
function convergence curve in Fig. 7. First of all, we can find
that both of them outperform the pre-defined weights that are
given by experts manually.

At the end, i.e. 1000 episodes, while CMA-ES can obtain
a slightly smaller fitness function value (φ = −0.2629) than
the proposed solution (φ = −0.2760), the proposed solution
converges a lot faster thanks to the Bayesian optimization
approach. It reaches (φ = −0.3) in about 30 episodes and
(φ = −0.28) in about 100 episodes. As a comparison, CMA-
ES needs about 300 and 500 episodes to reach the same
levels respectively.

The reason is that in every episode, CMA-ES must sample
λ = 17 candidates, where λ is determined by the amount of
unknown parameters N as: λ = 4 + b3 logNc. It means
that in each episode, the CMA-ES method essentially needs
to evaluate the fitness function (4) for 17 times while the
Bayesian optimization only evaluate it once.

942

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Tool relative to frying pan

X [m]

Y
 [

m
]

Manual

CMA−ES

BayesianOptimization

(a) Circle

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Tool relative to frying pan

X [m]

Y
 [

m
]

Manual

CMA−ES

BayesianOptimization

(b) Rectangle

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Tool relative to frying pan

X [m]

Y
 [

m
]

Manual

CMA−ES

BayesianOptimization

(c) Rose

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

Tool relative to frying pan

X [m]

Y
 [

m
]

Manual

CMA−ES

BayesianOptimization

(d) Cardioid

Fig. 6 From (a) to (d), we use different shapes to define the equality
constraint corresponding to the relative motion between two arms.

0 200 400 600 800 1000
−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

episodes

fi
tn

e
s
s
 f

u
n

c
ti
o

n
 v

a
lu

e

fitness value using CMA−ES,BayesOpt and Non−tuning

fitnessvalue−BayesOpt

fitnessvalue−CMAES

fitnessvalue−Non−tuning

Fig. 7 In this figure we compare the proposed approach to the CMA-ES
algorithm. We feed the same initial parameters and the same task to both
of them. The green and blue lines are the average fitness function values
using the proposed approach and CMA-ES respectively after 10 trials. Both
of them performs better than the manual tunning results depicted by the red
line, however the proposed approach converges a lot faster.

V. CONCLUSION AND FUTURE WORK

In this paper we explore a sample-efficient approach to
tune the soft task priorities of a QP controller. Inspired from
[12], we model the soft task priorities with a normalized
RBFN and then tune the hyperparameters of the RBFN to
obtain the optimal soft task priorities.

The proposed solution is validated through a dual-arm
simulation, where two 6DOFs arms are controlled with the
QP to satisfy multiple subtasks simultaneously. The proposed
solution outperforms the predefined fixed soft task priorities.
When we change the relative translation equality constraint,
the soft task priorities obtained from the proposed approach
still works in a good way. Comparing to the evolution algo-
rithm, i.e. CMA-ES, we can find that the proposed approach
converges a lot faster and uses a lot less computational
resources.

REFERENCES

[1] K. Miettinen, Nonlinear multiobjective optimization. Springer Science
& Business Media, 2012, vol. 12.

[2] A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, “Task
parameterization using continuous constraints extracted from human
demonstrations,” IEEE Transactions on Robotics, vol. 31, no. 6, pp.
1458–1471, 2015.

[3] J. Kober and J. Peters, “Learning prioritized control of motor primi-
tives,” in Learning Motor Skills. Springer, 2014, pp. 149–160.

[4] C. Towell, M. Howard, and S. Vijayakumar, “Learning nullspace
policies,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 241–248.

[5] R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for
nonlinear optimization, experimental design and bandits,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3735–3739, 2014.

[6] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[7] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P.
Cunningham, “Bayesian optimization with inequality constraints.” in
ICML, 2014, pp. 937–945.

[8] D. Drieß, P. Englert, and M. Toussaint, “Constrained bayesian op-
timization of combined interaction force/task space controllers for
manipulations,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 902–907.

[9] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic lqr
tuning based on gaussian process global optimization,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 270–277.

[10] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 491–496.

[11] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant
robots,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 221–226.

[12] V. Modugno, U. Chervet, G. Oriolo, and S. Ivaldi, “Learning soft
task priorities for safe control of humanoid robots with constrained
stochastic optimization,” in Humanoid Robots (Humanoids), 2016
IEEE-RAS 16th International Conference on. IEEE, 2016, pp. 101–
108.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] R. Lober, V. Padois, and O. Sigaud, “Efficient reinforcement learning
for humanoid whole-body control,” in Humanoid Robots (Humanoids),
2016 IEEE-RAS 16th International Conference on. IEEE, 2016, pp.
684–689.

[15] Y. Wang, F. Vina, Y. Karayiannidis, C. Smith, and P. Ögren, “Dual
arm manipulation using constraint based programming,” in 19th IFAC
World Congress, Cape Town, South Africa, August 2014.

[16] J. Vaillant, K. Bouyarmane, and A. Kheddar, “Multi-character physical
and behavioral interactions controller,” IEEE transactions on visual-
ization and computer graphics, 2016.

[17] Y. Wang, F. Vina, Y. Karayiannidis, C. Smith, and P. Ogren, “Dual arm
manipulation using constraint based programming,” IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 311–319, 2014.

[18] P. Ögren, C. Smith, Y. Karayiannidis, and D. Kragic, “A multi
objective control approach to online dual arm manipulation,” in In-
ternational IFAC Symposium on Robotic Control, Dubrovnik, Croatia,
Sep 2012, pp. 747–752.

[19] B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, “Evidence for composite
cost functions in arm movement planning: an inverse optimal control
approach,” PLoS computational biology, vol. 7, no. 10, p. e1002183,
2011.

[20] S. Ivaldi, O. Sigaud, B. Berret, and F. Nori, “From humans to
humanoids: the optimal control framework,” Paladyn, Journal of
Behavioral Robotics, vol. 3, no. 2, pp. 75–91, 2012.

943

