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Abstract— We present an optimization-based motion plan-
ning framework for producing dynamically rich and feasible
motions for a 3D one-leg hopper in challenging terrains. We
formulate dynamic motion planning as a nonlinear optimiza-
tion problem that computes position and orientation of the
centroidal model, position of the limb, contact forces, contact
locations, and timings of the gait in one unified framework.
The dynamics are represented as a single rigid body, while the
equations of motion are derived using discrete mechanics with a
variational quaternion-based integrator for the orientation. We
validate the capabilities by planning complex motions in three
challenging tasks: jumping over an obstacle, leaping over a gap,
and performing a somersault. All contact forces generated by
the proposed optimization are verified with accurate numerical
simulation to prove the feasibility of the generated agile motions
with respect to the kinematic, dynamic, and environmental
constraints.

I. INTRODUCTION

Ground reference points [1], e.g. divergent component of
motion (DCM) [2], instantaneous capture point (ICP) [3], and
zero-moment point (ZMP) [4] are useful physical quantities
for planning and control of discrete contact motions in legged
locomotion. Such representations are intuitive and allow
straightforward planning of references, while being effective
for generating stable motions [5].

However, as the motions become more complex, e.g.
involving contact points on non-coplanar surfaces or no
contact points for a short period of time (in situations
like running and hopping), the ground reference points—
usually developed on a 2D projection basis—become less
effective. As a result, they might require further extensions
(the on-line adaptation presented in [6] is required to match
the LIP model dynamics with that of the robot) or their
assumptions might be invalidated. Such extensions can incur
larger computational costs, while speed is one of the most
attractive characteristics of these methods [7]. Moreover, the
projected quantities have reduced dimensionality, which can
not fully represent the 6-dimensional information of either
spatial motion or contact wrench.

Therefore, a more sensible approach is to directly compute
ground reaction forces and the resulting physical motions.
This is applicable not only in walking scenarios but also
in running and hopping, non-periodic motions, etc. Equally
important is that angular momentum is usually neglected
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Fig. 1: A variety of dynamic maneuvers using one unified
optimization framework: (a) Jumping over an obstacle; (b)
Leaping over a gap; (c) Performing a somersault. We denote
the body by a red box, the contact point by a black dot, and
the workspace of the leg by the light-gray box.

or enforced to be zero; this heavily restricts the regime of
possible motions. Examples of motions not easily planned
with ground reference point methods are shown in Fig. 1,
computed by our optimization-based framework.

Still, reasoning first for the kinematic part and afterwards
for the dynamics in a hierarchical fashion has been used
to obtain a variety of motions. In [8], first a root path was
found using a sampling-based algorithm and then a discrete
sequence of whole-body configurations was generated. Due
to the kinematic formulation, only static stability was en-
forced at the discrete configurations. More importantly, as
with every hierarchical approach, it is not clear how solutions
of the former stages restrict the solution of the latter stages
of the pipeline.

As the models become more complicated, non-convexity
is introduced which make the problem very hard to solve
efficiently. In [9], the authors tried to absorb the discrete
and non-convex aspects of the problem using a mixed
integer convex optimization formulation. The mixed-integer
formulation is used to absorb the multiple non-convexities
present in the problem: related to gait (the footstep sequence,
kinematic constraints, etc.) and the non-convexities of the
terrain. Rather than computing individual motions for each
leg, they use a predefined set of gait sequences. Furthermore,
the convex segmentation of the terrain assumes that it can
be approximated by a small number of convex polygons;
otherwise the number of variables increases dramatically.
Yet, mixed-integer problems are still NP-hard to solve and
require relaxations, heuristics, etc.

A related line of research is focused on tackling the
problem using continuous methods. The initial approach
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explicitly using this rationale was presented in [10]. In their
work everything was treated as part of an objective, i.e. all
constraints were expressed as soft. Weighting the different
constraints can be tedious and require much fine tuning.
Furthermore, the inclusion of soft constraints and forces by
distance can result in non-plausible motions.

Another way to express the intermittent nature of contact is
by using complementarity constraints as shown in [11]. Com-
plementarity problems are tackled with difficulty by contin-
uous solvers due to the ill-posed nature of the constraints,
so the authors resorted to relaxations to make them more
amenable. Another important issue that plagues continuous
optimization approaches is the trade-off between problem
size and accuracy. In [12], the authors proposed methods
from discrete mechanics to make integration accuracy better,
without increasing significantly the problem size.

The phase-based parametrization introduced in [13] al-
lowed the authors to avoid solving the complementarity prob-
lem explicitly, but with the trade-off of introducing the num-
ber of steps as parameter. Thus, the approach is less general
than the complementarity formulation but computationally
faster. But dynamic and kinematic constraints are enforced
on regular intervals, which is not straightforward to select
because more dynamic motions require finer computations.
Also, quantities like force, limp position, and centroidal
position and orientation are parametrised with a specific
structure (i.e. splines), and as a result only smooth motions
and contacts can be represented.

We propose a constrained nonlinear optimization frame-
work which calculates centroidal motion, limb motion, con-
tact forces, contact timings and locations in a unified manner,
given initial state, desired final state, and information about
the environment. The dynamics of our system are derived
using discrete variational mechanics, with the associated
geometric structure-preserving properties. The contributions
of our work are the following:

1) The problem is formulated as one unified optimization,
rather than a hierarchy of cascade optimizations that
limits the solution space.

2) The use of discrete variational mechanics allows us to
express the dynamics with a minimal representation,
while maintaining good numerical integration accuracy.

3) Hard constraints are used to enforce physical plausi-
bility while avoiding a piecewise parametric motion
segmentation as splines, and as a result a wide range
of dynamically feasible motions are computed.

The paper proceeds as follows. In Section II we elaborate
on the proposed method, describing the model used in
Section II-A, the optimization approach in Section II-B, and
the derivation of the dynamics in Section II-C. Section III
presents our results in 3 challenging situations and we
conclude with some overall remarks in Section IV.

II. FORMULATION OF THE NONLINEAR OPTIMIZATION

A. Modelling approach
We use a single rigid body which is able to describe

the principles and include all the quantities associated with

locomotion; translational and angular momentum, contact
forces, body torques, orientation, etc. are well defined. At the
same time, the complexity does not reach the levels of the full
dynamics that a model of a humanoid robot typically exhibit,
with a large number of degrees of freedom. Furthermore,
current approaches in both planning and control prevalently
work with the centroidal dynamic [14], through the lens of
which we can view the dynamic model as a single rigid
body with mass equal to the total mass of the robot and
configuration varying inertia.

We augment the kinematic model of the rigid body with a
contact point. The contact point (or limb) should always lie
inside simplified kinematic limits, as shown in Fig. 1, while
its motion should exhibit continuity.

B. Formulation of the optimization problem

Ideally, we would like to compute state and control trajec-
tories which satisfy at every instant all the constraints that we
would wish to impose—both nonlinear equality and inequal-
ity constraints. As this is currently impossible for general
formulations, we follow the paradigm of “first discretize then
optimize” prevalent in the trajectory optimization literature.
In specific, we discretize both the state and the control with
respect to time. We refer to these discretization points as
knots. In order to formulate the optimization problem, we
strive in principle to express as many constraints as possible
implicitly and not explicitly. That is, we try to include
constraints in the formulation itself rather than explicitly
enforcing them.

The problem can be described as:

minimize
x

o(x)

subject to ẋ = f(x)

g(x) = 0

h(x) � 0

lb � x � ub,

(1)

which in our case is a non-convex optimization problem.
The symbols � and � denote a pointwise inequality between
two vectors. The variables x of our optimization problem,
denoted by capital letters, are the following:
(A) The global position c ∈ R3 and the change of orienta-

tion β ∈ R3 of the centre of mass (CoM).
(B) The duration dt ∈ R between two successive knots.
(C) The non-negative gains γ ∈ R+ for obtaining the vertex

form of the linearised friction cone.
(D) The limb’s position in the global frame p ∈ R3.
(E) The limb’s velocity ṗ ∈ R3.
All constraints are denoted by small letters. The nonlinear
equality constraints are the following:
(a) The dynamics of the CoM. An in-depth discussion about

this constraint is given in Section II-C.
(b) The initial translational velocity ċ0 ∈ R3 of the CoM

and the initial angular velocity ω0 ∈ R3 in body
coordinates. The initial position c0 ∈ R3, and the initial
unit quaternion α0 ∈ H, ||α0|| = 1 for the orientation
are implicitly enforced.
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(c) The desired final position cf ∈ R3 of the CoM. Final
constraints for the rest of the quantities with initial values
can be straightforwardly incorporated.

(d) We assume that we have access to a height map that
describes the terrain’s elevation. The contact point must
be on the ground:

pz = hzmap. (2)

(e) The contact point does not contribute to the dynamics of
the system. Thus, its kinematics are enforced through a
forward Euler approximation:

pi+1 = pi + ṗidti. (3)

(f) Unilateral and friction cone constraints for a contact
force are enforced by the vertex form of the linearised
friction cone [15]:

f =

4∑
k=1

γkvk, (4)

where f ∈ R3 is the generated contact force, and
vk = n+ µtk are the extreme rays of the friction cone
which are obtained from the surface normal n ∈ R3, the
surface tangents tk = {±t1,±t2} ∈ R3, and the friction
coefficient µ.

The nonlinear inequality constraints are:
(g) The contact point should lie above the height map:

pz ≥ hzmap. (5)

(h) Kinematic box-type limits for the limb:

lb � bp− bc � ub, (6)

where lb,ub represent the lower and upper box bounds
of the relative position between the limb and the CoM,
and bp and bc are the limb and CoM position in the
body frame, respectively.

Finally, the following lower bounds are defined:
(i) The time duration between successive knots should be

non-negative, i.e. dt � 0.
(j) The non-negative gains γi ≥ 0. We also use an upper

bound for this gains to bound the contact force.
We start by defining the number of contacts per limb and

the number of knots per phase. By phase we mean a situation
when the limb is either in rigid contact with the terrain or
not [13]. Other phases in our formulation do not exist. The
number of knots per phase is equivalent to the accuracy that
we wish to achieve. Subsequently, the knots are divided in
three sets:

• Knots where the limb is in contact with the terrain
belong to the contact set.

• Knots where the limb is not in contact belong to the
flight set.

• Knots between a flight and a contact phase belong to
the landing set.

This division is inspired by the different states that can
describe two contacting rigid bodies, as explained in [16].

There exist quantities that are defined in all knots, but also
quantities defined in knots of certain sets only. Specifically,
quantities (A) and (B) are defined in all knots, (C) are defined
at knots belonging to the contact set, (D) are defined for knots
in the flight and landing sets, and (E) are defined during
flight phases only. Furthermore, we assume that the position
is fixed during contact—that is zero limb velocity—and this
is implicitly enforced.

These quantities are accompanied by constraints in order
to enforce physical plausibility. As in the case of quanti-
ties, different constraints are enforced between different sets
of knots. Equality constraints (a), (b), (c), inequality con-
straint (h) and bounds (i) are enforced for quantities defined
in all knots. Equality (d) is defined during landing phases,
while (e) during the flight phases. Finally, inequality (g) is
defined during flight phases and bound (j)—i.e. equality (f)—
during contact phases.

C. Discrete variational mechanics

The main idea underlying discrete mechanics is to dis-
cretize the action and afterwards obtain the equations of
motion for a mechanical system, rather than the “classical”
approach of discretizing directly the equations of motion.
The main advantage of this is that the obtained integrators
automatically respect conservation of quantities like mo-
mentum and energy, and symplectic form, while exhibiting
very good long term numerical behaviour. Here, only the
necessary parts for our formulation will be presented while
more information can be found in [17].

The starting point of the forced case is the discretization of
the Lagrange—d’Alembert principle [18] that seeks discrete
curves q|Nk=0, where qi ∈ Q is a discrete configuration in
the configuration space, satisfying

δ

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

(
F−
k · δqk + F+

k · δqk+1

)
= 0,

(7)
where k = 0, . . . , N , Ld : Q × Q → R is the discrete
Lagrangian, and F+

k , F−
k are the right and left discrete

forces, respectively, for all variations δqk|Nk=0 vanishing
at the endpoints. This is equivalent to the forced discrete
EulerLagrange (FDEL) equations

DqkLd(qk−1, qk) +DqkLd(qk, qk+1) + F
+
k−1 + F

−
k = 0,

(8)
for k = 1, . . . , N −1. In our case, the initial state is not two
consecutive configurations but an initial configuration and
an initial generalized velocity. We can use the left discrete
Legendre transform FF−

Ld : Q×Q→ T ∗Q obtaining

Dq̇0L(q0, q̇0) +Dq0Ld(q0, q1) + F
−
0 = 0, (9)

where L is the system’s Lagrangian, from which we must
get the next state given our initial condition.

We now proceed to make the previous discussion more
specific to our situation. The continuous Lagrangian L :
TSE(3)→ R of a single rigid body is

L = T − V =
1

2
mċT ċ+

1

2
ωT Iω − V, (10)
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where T is the kinetic energy, V is the potential energy, m
is the mass of the rigid body and I is the inertia matrix. The
translational and rotational dynamics can be decomposed,
and as a result we study each part separately.

1) Translational dynamics: We follow a similar line of
thought as presented in [19], the main differences being the
inclusion of forces (i.e. the discretization of the Lagrange—
d’Alembert principle rather than the principle of stationary
action), and the use of non-constant time intervals due to
the formulation of our optimization problem. In a simi-
lar fashion, we approximate the translational velocity as
ċ = ck+1−ck

hk
and the relevant integrals using the midpoint

rule approximation. The left and right discrete forces are
approximated then as

F−
k = F+

k =
hk
4
(fk+1 + fk). (11)

Thus, by virtue of (8) we have that

m

hk−1
(ck− ck−1)+

m

hk
(ck− ck+1)−

hk−1 + hk
2

∂V
∂c

(ck)

+
hk−1

4
(fk−1 + fk) +

hk
4
(fk + fk+1) = 0, (12)

while the initial condition is calculated by

mċ0+
m

h0
(c0−c1)−

h0
2

∂V
∂c

(c0)+
h0
4
(f0+f1) = 0. (13)

2) Rotational dynamics: The orientation is parametrized
using unit quaternions due to the small number of parameters
(4 contrary to rotation matrices that require 9) and the lack
of gimbal lock (as opposed to Euler angles). In order to
avoid explicitly enforcing the unit norm for the quaternions
using Lagrange multipliers, we formulate the problem using
a variational integrator that preserves the Lie group structure
of the unit quaternions [19], [20]. Again, we use non-constant
time steps which leads us to the constraint:

hk+1

4
(τk+τk+1)+

2

hk+1

(
αs
k+1Iα

v
k+1 +α

v
k+1 × Iαv

k+1

)
=

2

hk
(αs

kIα
v
k −αv

k × Iαv
k) +

hk
4
(τk−1 + τk), (14)

where αk =
[
αs
k αv

k

]T
is the unit quaternion of the relative

orientation between knots k and k + 1, and τk is the body
torque at knot k. In (14), it is assumed that α is a unit
quaternion. To implicitly enforce the unit norm, the authors
in [20] used the parametrization α =

[√
1− φTφ φ

]T
,

which holds for |φ| < 1, which is not unconstrained and
can lead the optimizer to compute complex values, while
the authors in [19] used the exponential map, which has a
singularity at zero. A more appropriate parametrization for
our case is using the Cayley map, which is defined as:

α =

[
2

1+βTβ
− 1

2
1+βTβ

β

]
, (15)

where β ∈ R3. Finally, as with the translational dynamics,
the constraint for the initial condition is defined as:

Iω0 +
h0
4
(τ0 + τ1) =

2

h0
(αs

0Iα
v
0 +α

v
0 × Iαv

0) (16)

TABLE I: Parameters used in all simulation scenarios

Type of rigid body Cuboid
Dimensions (lx, ly , lz) 0.3× 0.3× 0.55(m)

Mass (m) 80(kg)
Principal moments of inertia (I) 2.6167, 2.6167, 1.2(kg ·m2)

Static friction coefficient (µ) 0.7
Height (hb) 1.1(m)

Kinematic limits (lkx, l
k
y , l

k
z ) 0.6× 0.6× 0.2(m)

Initial position (c0) [0,−1.4, 1.1](m)
Initial velocity (ċ0) [0, 0, 0](m/s)

Initial orientation (α0) [
√
2/2, 0, 0,

√
2/2]

Initial angular velocity (ω0) [0, 0, 0](rad/s)
Final position (cf ) [0, 0.9, 1.1](m)

Maximum constraint violation 5 · 10−5

Objective 0T

Fig. 2: Time-lapse snapshots of the solution in Case 1.

III. RESULTS

In order to demonstrate the results of our formulation,
we will focus on 3 different situations: jumping over an
obstacle, leaping over a gap, and requiring a somersault.
These are representative cases where classical approaches
encounter large difficulties to generate dynamic motions.
Table I summarises the parameters that are used across all
simulation scenarios.

We validated the feasibility of the produced plans by
accurate numerical simulation with MATLAB [21], using a
very fine step size for integration. Also, MATLAB’s non-
linear optimization solver fmincon (interior point algo-
rithm) is used to solve the optimization problem. Finally,
for constraints in which analytic gradients are not available,
automatic differentiation using CasADi [22] is used.

Case 1: Jumping over an obstacle

In the first case, we place a triangular extrusion with height
equal to half of the model’s height and span of 0.2(m).
Since the optimizer computes solutions at discrete knots, the
interpolated motion afterwards might intersect the obstacle.
In order to avoid such situations, we give a sketch of the
desired solution by providing linear spaced positions of the
CoM and limb as a starting point for the optimizer. We select
3 steps and 10 knots per phase.

As a quantitative measure of the difference between the
optimizer solution and that of MATLAB for the CoM po-
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Fig. 3: Centre of mass position in Case 1: In blue is the
position along the z-axis as computed by MATLAB, while
in red is the linear interpolated result of our optimizer.

Fig. 4: Time-lapse snapshots of the solution in Case 2.

sition we use the root mean square error (RMSE), which
is [6.6216 · 10−4, 7.9697 · 10−4, 0.0066](m). In Fig. 3, we
show the two outputs for the position in z axis only, since
the other two axis have very small errors that make the plots
almost indistinguishable. To measure the difference between
the computed quaternions [23], we use the following metric

θ = 2arccos (|α1 ·α2|), (17)

with θ the angle required to get from one orientation to the
other, and · the dot product between two quaternions. In this
case, θ = 0.2941(rad) is the maximum angle. Snapshots of
the resulting motion are shown in Fig. 2.

Case 2: Leaping over a gap

In this case, shown in Fig. 4, we place the model at a
terrain with 3(m) height. At the same time, we place a gap
of 1(m) span from −0.5(m) to 0.5(m) along the y-axis.

Our scheme is only able to find local solutions. Thus,
unless we model the gap in the formulation, it is very difficult
to converge. Even though in the terrain representation we
use a smooth surface interpolated using cubic splines, the
gradients near the edges still change in a very abrupt manner.
Furthermore, for points inside the gap, the optimizer is
unable to find solutions because very large forces would be
required in order to escape from it. As a result, we select
the desired flight phase where the jump takes place. Then
we add a lower bound for the position of the limb at the last
knot of the landing set before the jump and an upper bound
for the first knot of the landing set after the jump.

0 0.5 1 1.5 2
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1
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ty

on
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Contact force
Limb position

Fig. 5: Complementarity condition in Case 2: Force only
exists when the limb is in contact with the terrain, while the
limb moves freely only when force is 0. All quantities are
normalized by their maximum values.

Fig. 6: Time-lapse snapshots for part of the solution in
Case 3. The desired final position of the centre of mass,
as specified in Table I, remains the same.

Here we select 3 steps and 8 knots per phase. The RMSE
for the position of the CoM is [0.0042, 0.0121, 0.0129](m),
while the maximum angle is θ = 0.1633(rad). In order to
stress out the complementarity inherent in the formulation,
we show in Fig. 5 the contact forces and limb positions in
the same graph. Since we are comparing different physical
quantities, we normalize each one with their maximum value
to get a qualitative comparison.

Case 3: Somersault

To show the modularity of the framework we include an
orientation constraint. In specific, we desire an orientation π
rad with respect to the x axis in the middle of the first flight
phase. The situation is depicted in Fig. 6.

There are two potential ways to implement that: either via
a suitable initialisation or via an equality constraint. Here,
we implement the second approach.

We select 4 steps and we use a larger number of knots per
phase, i.e. 15, to get a sufficiently accurate approximation of
the orientation. This shows why being able to choose the
number of knots per phase is an important factor; different
motions may require different approximation.

The translational part, due to the fine mesh, has a RMSE of
[1.4259·10−4, 2.4917·10−4, 0.0015](m), while the rotational
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Fig. 7: Orientation for Case 3: In red is the MATLAB’s
output as baseline, while in blue is the output of our method.

part has a maximum angle of θ = 0.3127(rad). The
rotational part has a larger error in this case due to the relative
large time steps for a midpoint rule approximation. This error
can be seen in the quaternion components presented in Fig. 7.

IV. CONCLUSION

Our study focuses on a unified nonlinear optimization
formulation that is capable of producing a wide range of
dynamic motions in challenging scenarios as demonstrated
by our simulation study. The scope of this work focuses on
the formulation of feasible solutions. Thus, there are still
a number of important questions to be answered as future
work: initialization, computation time, objective function,
and the extension to multiple limbs.

The optimization problem in this work is able to con-
verge to local solutions only. As a result, seeding with
appropriate initializations is very important in terms of the
quality of the solutions and computational speed, while the
initialization requires specific terrain information. Besides,
the convergence speed depends also on the characteristics
of the terrain. Computation time can vary from seconds to
minutes depending on these two factors.

A specific objective function is not yet given due to the
additional computational cost, although it is necessary to
quantitatively differentiate between feasible solutions. We
plan to augment it by penalizing the magnitude of contact
forces and large limb velocities. Finally, we plan to extend
this formulation to multiple limbs by specifying different
timings and enforcing the kinematic constraint separately and
dynamic constraints for the aggregate contact force.

REFERENCES
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