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Abstract— We investigate the effectiveness of transfer learn-
ing for accelerating shallow and deep reinforcement learning
of “mediated interaction tasks”. In these tasks, the desired
effects cannot be created through direct interaction, but instead
require the learner to discover how to exert suitable effects
on the target object through involving a suitable “mediator
object”. We focus on the case where transfer learning is
applied to generalize experiences from source tasks that are
solvable through direct, unmediated interaction, to target tasks
that require mediated interaction for their solution. We find
that transfer learning employed in this context leads to a
significant acceleration of learning. A refinement of the basic
transfer learning strategy that is motivated from the principle
of scaffolding in psychology leads to further improvements,
totalling to an overall speed-up factor of almost one order of
magnitude for a reinforcement learner solving an “extension-
of-reach” task in a 2D world with simulated physics.

I. INTRODUCTION

Many daily actions, such as pushing an object with a
stick, pouring the contents of a mug, or accessing a book
in a drawer, require some form of “mediated interaction”
where the agent can interact with the target object only after
actively preparing access via the intermediate use of some
auxiliary “mediator object”. Closely related is tool use, a
learned capability found in humans, but also in some other
species, such as some primates or birds [1]. It has been
linked to higher cognition and, obviously, is also a desirable
capability for robots to become more adept at many daily
tasks typically arising in human environments [2][3].

The interaction of humanoid robots and humans is a
challenging task which not only requires the fast learning of
new assigned duties but also the ability to learn in ways that
enable the human to easily instruct the robot. If the robot’s
morphology is also resembling a human, tool affordances,
e.g. their use as a mediator object within a tasks context, is
also an important aspect that has to be taken into account
[2][4].

Reinforcement learning has been considered as an attrac-
tive method to enable robots to master mediated interaction
tasks. While conceptually very attractive, a major problem
arises from often prohibitively large numbers of required
learning steps to achieve reasonable performance. Especially
in cases where deep neural networks are involved, the long
training times might render the learning impossible when
real robots are involved within the learning process.

Transfer learning has been suggested as a partial remedy
[5]. It has been shown to be very effective to initialize a
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reinforcement learner from the results of previous learning
of simpler source tasks which share structure with or are
suited as building blocks for the original target task of the
reinforcement learner. Examples include maze navigation
tasks [6], simulated robot soccer [7] and also first attempts
to learn tasks using a physical robot [8]. While most transfer
learning schemes are not paying much attention to the
fashion in which the source tasks are provided, it can be
combined with curriculum learning [9]. This method is
claiming that a thoughtfully chosen sequence of source tasks
can further enhance the learning process [10] and has become
an attractive approach to tackle complex problems within the
field of deep reinforcement learning [11][12].

In the present contribution, we investigate the effectiveness
of transfer learning when the source tasks are instances
that are solvable through direct, unmediated interaction,
while the target tasks are instances that can only be solved
through mediated interaction. Thus, our focus is how transfer
learning can help to facilitate mediated interaction learning
from experiences from simpler tasks that are similar, but
permit direct, unmediated solutions.

As a further addition, we report results that the effective-
ness of transfer learning can be further enhanced by applying
curriculum learning. The invented method that is used to
create the task sequences is loosely motivated from a concept
known in psychology under the name of scaffolding [13]: it
denotes a particular strategy of choosing source tasks such
that the level of difficulty of each new source task increases
with the proficiency of the learner so that it always stays
within what psychologists denote as the learner’s “optimal
zone of proximal development”.

For our study we use a simulated 2D interaction scenario
in which an artificial agent is able to interact with different
objects. We find that within this simplified, yet physically
realistic toy world, the integration of transfer learning is
able to speed up the learning process of a “extension-of-
reach task” by about an order of magnitude. Non-linear
function approximators like neural networks are specifically
designed to represent very non-linear problems, and it might
be hard to justify the increase in parameters and training
complexity at a first glance. As linear function approximators
are, however, very sensitive on changes of the parameters
and also on the learning task, it is advantageous to use non-
linear function approximators for an enhanced version of the
studied interaction scenario (e.g. varying the used tools or
using a real/simulated robot for the control of the objects).
Thus, showing the efficiency of the proposed strategies when
combined with non-linear Q-Learning in this “simpler” sce-
nario can be a good indicator that the proposed approaches
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are also increasing the learning efficiency in more complex
ones, where utilizing non-linear function approximators is a
reasonable choice.

Section II gives a short introduction of Q-learning with
linear and non-linear function approximation which is used
in this work. The next section III introduces the learning
domain and some additional information on the composure
of the environment. Section IV then explains the transfer
learning scheme in detail, together with a way of additional
improvement and stability through the scaffolding based
approach. After describing the learning scenarios, the ex-
periments and the used learning algorithms in section V, we
present an evaluation of the agent’s learning performance for
the proposed approaches (section VI). Section VII concludes
with a final discussion of the achieved results, together with
some suggestions to future work.

II. REINFORCEMENT LEARNING
Reinforcement learning is a well-known class of machine

learning algorithms for solving sequential decision making
problems through maximization of a cumulative scalar re-
ward signal [14].

We use the standard formulation of a Markov decision
process defined by tuple (S,A,PA,R,γ,S0), where S denotes
the set of states and A the set of admissible actions. PA is
the set of transition matrices, one for each action a ∈ A with
matrix elements Pa

s,s′ specifying the probability to end up in
state s′ after taking action a when in state s. Finally, R :
S×A→R is a scalar valued reward function, γ the discount
factor and S0 ⊆ S is the set of starting states.

Reinforcement algorithms are now aiming for the policy
π : S→ A that maximizes the discounted future reward. To
find this optimal policy, the state-action value

Qπ(st ,at) = Eπ

[
R(st ,at)+

∞

∑
k=t+1

γ
k−tR(sk,π(sk))

]
is defined. Qπ(st ,at) has the interpretation of the discounted
future reward, expected from following the current policy
π after taking a single freely choosable (and possibly sub-
optimal) action at from state st . The discount factor γ ∈ [0,1)
balances the weighting between present rewards and rewards
that lie increasingly in the future.

Thus, the agent should follow the policy π(st) =
maxa Qπ(st ,a) that chooses the action at each time step
which maximizes the current state-action value.

If the dimension of the state space is huge, which is
the case in most complicated learning scenarios, a common
approach is to approximate Q(s,a) by using a linear function

Q(s,a,~w) = ~wᵀ ·~Φ(s,a)

with a weight vector ~w ∈ Rn and a function ~Φ(s,a) ∈ Rn

of lower dimensional features that represents the state-action
pair (s,a).

The optimal state-action value can then be approximated
by iteratively minimizing the squared Bellman error

Lt(~wt) = E
[
(rt + γ ·max

a
Q(st+1,a;~wt)−Q(st ,at ;~wt))

2
]
.

This leads to a stochastic gradient descent update for the
weights ~w at time step t +1, defined as

~wt+1 = ~wt +αt ·
[
rt + γ ·max

a
Q(st+1,a;~wt)−Q(st ,at ;~wt)

]
·

∇~wt Q(st ,at ;~wt). (1)

With the help of (1), Q(s,a) can be updated iteratively, while
the update size is determined by a (typically decreasing)
learning rate αt ∈ [0,1).

One drawback of this kind of linear approximation is that
the type of function ~Φ(s,a) representing the state-action
pairs has to be chosen very carefully to achieve a good
learning performance. The difficulty of finding a reasonable
representation increases with the complexity of the given
state space.

One way out of this dilemma is to replace the linear
function that represents the given state with a non-linear
function like a neural network. Neural networks are able to
easily abstract the most complex functions by a hierarchical
composition of low-level abstractions. In a deep neural
network multiple layers of neurons are stacked together,
where each layer computes abstract representations of the
input data with increasing complexity. The combination of
deep neural networks with reinforcement learning led to
many breakthroughs as learning to play video games [15] or
mastering the challenging board game GO [16]. One popular
deep reinforcement algorithm is deep Q-learning which is
presented into detail in [15]. This algorithm approximates
the state-action value function Q(s,a) with a deep neural
network. In order to train the deep Q-learner, the experienced
transitions (st ,at ,rt ,st+1) are stored in a replay buffer which
is then used to train the network weights according to (1)
using mini-batch gradient descent.

III. LEARNING DOMAIN

As our testbed for investigating skill transfer in mediated
interaction learning we employ a 2D world with physics
simulated with the open source Box2D physics engine [17].
The world is illustrated in Figure 1a and consists of an agent,
a disc-shaped “target object” (yellow) and an L-shaped object
“mediator object” (“tool”, orange). The task of the agent is
to bring the goal object into the shaded circle in the center
(“goal area”). To this end, the agent can at each time step
“pick” the goal object or the mediator object and exert a
(discretized) force/torque at the chosen picking location. This
allows the agent to move the chosen object about a fixed
distance of one unit per time step within the admissible
interaction range which has a radius of 10 units. The four
directions of the movement are determined by the non-static
coordinate system in Figure 1b, where the objects can be
navigated along the coordinate axis. Additionally the agent
is able to rotate the tool around the active picking location
by π/4 per time-step. Instead of using friction, a linear and
angular damping factor is implemented.

Picking locations are discretized and fixed at the objects
(see Figure 1a): the goal object offers a single picking
location at its center, the mediator object offers three picking
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(a) Construction of the sensory
input. The five dots indicate the
five different picking locations. It
is also an example of a “single-
object interaction task”.

(b) Illustration of the used sen-
sorimotor coordinate system to
manipulate the objects position
within the simulation world. It is
also an example of a “mediated
interaction task”.

Fig. 1: Illustration of the presented simulation world. The
picking locations are indicated by black dots.

locations, two at its ends and one in the middle. Furthermore,
there is an additional picking location in the center of the
domain which deals as an unbiased starting location for the
agent and is further integrated to be an absorbing state that
increases the stability of the applied learning algorithms.

We assume that the agent has a simple relational percep-
tion of the world state consisting of the six scalar distances
between the three picking locations ~Mi on the mediator-
object and the center of the target-object ~T , i.e. |−−→MiT |,
and the three distances of the picking locations ~Mi and the
domain’s origin ~O. Additionally, the sensory representation
includes a 5-dimensional binary vector ~Apos that encodes the
information of the agent’s current picking choice.

These distances, visualized by the dotted red lines in
Figure 1a, along with the binary picking information, give
rise to the state vector

~s =
(
|−−→M1T |, |−−→M2T |, |−−→M3T |, |−−→M1O|, |−−→M2O|, |−−→M3O|,~Apos

)>
.

(2)
However, the agent can only reach picking locations that lie
inside the circular area. Therefore, when the goal object is
outside the circle, the agent must first “discover” that the
mediator object can be used to extend the agent’s reach
beyond the circle boundary.

Consequently, the agent can choose between 11 actions
to interact with the environment. Learning occurs in discrete
episodes, each episode being limited to 100 interaction-steps.
If the agent is able to navigate the target object in the goal
area1, it receives a fixed reward of r = 10. By this kind of
task definition the influence on the agent’s learning process
is minimized, but has the disadvantage that the agent takes
very long to start learning as it has at least once to solve
the problem by chance to gain its first reward. Additionally,
artificial noise is integrated into the system that makes the
agent execute a random action with a probability of 0.1.
The additional noise term adds a stochastic component to

1i.e. the distance to the domains origin is smaller than the radius of the
goal area

the deterministic learning domain that disturbs the agent
occasionally with a sub-optimal action.

IV. SKILL TRANSFER WITH SCAFFOLDING FOR
ACCELERATING LEARNING OF MEDIATED

CONTROL

We present two strategies for accelerating learning of
mediated control. Strategy 1, formalized in Algorithm 1, uses
only skill transfer based on prior learning of a number of
randomly selected, simpler source tasks before switching to
learning instances of the target task. Strategy 2 complements
Strategy 1 with an approach that replaces the random se-
lection of the source tasks with a structured selection that
restricts the choice of new source tasks to a vicinity of the
set of already solved source tasks. This vicinity is defined
with the help of a suitable similarity metric in the source
domain. It is formalized in Algorithm 2.

Both strategies assume a simple and generic structure of
the learning domain: learning should occur in a sequence
of episodes, each episode focused on a single task instance,
attempting to solve it in a number of consecutive time-steps
(number of actions) and terminating after success or when
a step limit is exceeded. After termination, another episode
starts. Finally, we assume that source and target tasks are
from the same domain, so that both can be handled by the
same learning process.

Under these assumptions, we can represent each task
(irrespective of being a source or target task) by a pair
~c = (~s,~t), where ~s represents the task in the sensor space
of the agent, and ~t represents the task in some task space
coordinates (which usually differ from sensor coordinates).
We denote by C the set of solvable source tasks that is
provided for the source learning stage and by Csolved the
subset of source tasks that already have been solved at
a particular time step. The number of to-be-solved source
tasks, i.e. the number of elements in C is given by Nsource.

Both strategies are motivated from the typical characteris-
tic of mediated control: reaching the goal requires to suitably
concatenate a number of subskills. Each subskill refers to the
goal object or to one of the (single or more) mediator objects.
To solve such kinds of task, the agent has to learn these
subskills and bring them together in a suitable sequence. For
instance, in the learning domain considered in this paper, a
subskill is to learn moving the goal object directly into the
goal region when it is sufficiently close to it. For complex
tasks, each subskill may itself require a decomposition, re-
quiring the agent to organize an entire hierarchy of subskills.
This existence of subskills can be exploited by pre-learning
the most essential low-level ones, e.g., the identification and
manipulation of the target object as well as the recognition
of the goal conditions. Then, instead of learning source tasks
up to perfection, the agent only learns them a small number
of times and uses the imperfectly learned subskills for a
“lightweight initialization” of the learning process of the
target task. This also prevents specialization on the source
tasks to interfere with the learning of the target task. In the
target task the agent should learn, based on the knowledge
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Algorithm 1: Strategy 1 - Transfer learning for
mediated interaction tasks

Data: Set C of Nsource clustered source tasks
for learning episode = 1, M do

if C 6= /0 then
Random sample task instance from C
start learning episode
if Agent solves task then

remove task from C

else
start episode and learn the target task

it has achieved in the source task, more intermediate skills
like how to use objects as tools or object-object interaction.

The simple transfer learning Strategy 1 implements this
idea, switching from source task to target task learning after
a given set of to-be-learned source task instances has been
solved without stopping the learning process. It has a set C
of Nsource tasks as its only tunable input parameter.

Strategy 2 refines Strategy 1 through a more structured
selection strategy for the source tasks. The adopted strategy
follows a fundamental principle of human learning that has
become known under the name of scaffolding [13]: learning
progress is accelerated when new learning instances are
not selected at random, but instead are matched to the
learners current proficiency. This requires a new example
to be neither too easy nor too difficult for the learner.
This can be achieved through a “similarity-similarity based
heuristic”: choosing each new learning example to be similar
to one of the instances that the learner has solved previously.
The simplest implementation of such a heuristic employs a
suitable similarity metric in the domain of the task instances
(cf. below). Besides similarity, further constraints (such as
recency) could refine the selection further. Strategy 2 im-
plements the simplest variant, based on similarity with no
further constraints. Therefore the next to-be-solved source
task is selected by minimizing the distance to a solved source
task, according to the chosen similarity metric. Similar to
Strategy 1, its main input parameter is again a set C of to-
be-solved source tasks before switching to learning the target
task occurs.

An important ingredient in both algorithms is the sampling
of their instances, with Strategy 2 in addition requiring a
similarity metric.

A. SENSOR AND TASK SPACE SAMPLING

Tasks are defined within the task space. Yet, the task
space differs in most cases from the sensor space which is
used as an input for the learning algorithm. In the worst
case, the mapping from the task space to the sensor space
is also not invertible. This decorrelation of task and sensor
space can have a huge impact on the learning process as
small deviations within the task space can have completely
different effects within the sensor space. Consequently, the

Algorithm 2: Strategy 2 - Scaffolded transfer learn-
ing for mediated interaction tasks

Data: Set C of Nsource clustered source tasks
for learning episode = 1, M do

if C 6= /0 then
if Csolved = /0 then

Sample task ~c from C
else

Sample random task ~k ∈Csolved
Among unsolved source tasks C:
find task ~c ∈C that is similar to ~k

else
Sample random task ~c for the target task

start episode for learning ~c
if Agent solves task ~c and C 6= /0 then

add ~c to Csolved
remove ~c from C

agent’s modalities of perception, encoded in the sensor space,
have to be taken under consideration during the structuring
of the learning process.

Minimizing the number of required source tasks Nsource
while maintaining a uniform distribution over the relevant
part of the sensor space, i.e. it is accessible through a
mapping from the task space, can be realized through clus-
tering. Therefore a large number of random tasks ~c = (~s,~t)
is generated within the task space. The next step is to cluster
the tasks ~c with respect to ~s. Now, for each cluster the task
~c with the most similar representation ~s in the sensor space
is chosen to be in the task set C .

B. SIMILARITY METRIC

A good measure of similarity is a key ingredient for
scaffolding strategies. To efficiently structure the learning
process the pending tasks have to be conveniently compared
to find the one which aligns best with the agents current
skills. One reasonable choice is to measure the correlation
between different tasks ~s in the sensor space by utilizing the
cosine similarity

CosSim(u,v) =
(~u ·~v)
||~u||2||~v||2

. (3)

The best choice how to determine the correlation of the
tasks is heavily depending on the structure of their embedded
space and the processing afterwards. Thus the similarity of
tasks is not only influenced by their own composition but
also through the characteristics of the used representation
and learning algorithm.

C. PERFORMANCE METRICS

If an artificial agent has to learn the interaction with
objects in the real world there are often many undesired
events that may happen because of suboptimal behaviour.
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The objects might break or the agent itself might be dam-
aged. So it is crucial to reach a good performance as soon
as possible in order to minimize the chance of these events
to happen.

Based on this statements two evaluation metrics are chosen
to evaluate the efficiency of the designed transfer learning
scheme against regular learning.

a) Total Reward Loss: The total reward loss LR is
defined as the sum of the differences between the optimal
achievable reward Rmax = 10 and the achieved average re-
ward 〈Ri〉 evaluated at learning step i. With the total reward
loss defined as

LR =
T

∑
i
[Rmax−〈Ri〉] ,

the learning process with the smallest LR is the one where
the agent has gained the most reward and has therefore solved
the tasks with the highest efficiency.

b) Time to Threshold: This metric, which is introduced
in [5], measures the number of learning steps which are
needed to reach a certain performance threshold. The choice
of a reasonable threshold performance is depending on the
studied learning scenario. As the goal in object interaction
tasks is to let the agent solve them with a good perfor-
mance as fast as possible to minimize errors and therefore
the probability of damaging the environment, the threshold
performance for this work is chosen to be at an average
success rate of 80%. Although this threshold is significantly
below optimal success, it is on the one hand high enough to
tag the corresponding policies as successful and on the other
hand low enough that the performance level can be achieved
in all experiments within a reasonable amount of learning
steps (see eg. Figure 3).

V. EXPERIMENTAL SETUP

Utilizing the described simulation world, two learning
tasks were designed.

a) Single-Object Interaction Scenario: At the begin-
ning of a learning episode, the tool and the target object are
uniformly distributed over the simulation world inside the
agent’s interaction range (see e.g. Figure 1a). The agent now
has to learn how to move the target object into the goal area.
After successfully solving the task instance or exceeding the
limit of possible interaction-steps per episode, the task starts
anew with different initial object positions that are again
within the agents interaction range.

b) Mediated Interaction Scenario: This “extension-of-
reach scenario“ is structured like the first one with the
exception that the target object is distributed outside the
border of the agent’s interaction range. Now it is only
possible for the agent to solve this task by learning to exploit
the hook as a tool to pull the target object inside the agent’s
interaction range (see e.g. Figure 1b).

The “mediated interaction scenario” can efficiently be
solved, using the presented learning schemes (see section
IV) by transferring skills from the “single object interaction
task” (Figure 1a). It assigns the same problem to the agent,

i.e. navigate the target object to the goal, but under easier
conditions and is therefore a good choice to be used as the
source task.

At first, the results of the regular transfer learning scheme
(Strategy 1), presented in section IV, is evaluated. The set
C of the to-be-learned source task configurations are the
allowed object positions (~xtarget,~xtool) within position- and
sensor-space2 that can arise during the “single object inter-
action task”. The characteristic aspect of this configurations
is that the target object is always within the agents reach
and can be navigated to the goal area without the use of
the tool. For the clustering part, 104 target configurations
together with the cosine similarity (3) are used to generate
varying number of source task configurations Nsource. During
the learning, these source task configurations are randomly
presented to the agent at the beginning of each episode
as described in Algorithm 1 until the agent has solved the
problem Nsource times. Afterwards the agent directly starts
to learn the target task without any delay. This implies that
learning the source tasks is not rolled out within a separate
learning process but treated as a pre-learning routine that is
carried out right before learning the target task. Thus the
learning steps needed to solve the source tasks are included
within the learning steps of the whole learning run.

In a further step, the transfer learning scheme is extended
by “scaffolding” the source task learning as described in
Algorithm 2. Therefore, the same experiment as presented
above is conducted with the improved transfer learning
algorithm.

To gain more insight into the impact of different func-
tion approximations on the learning process, we evaluate
the learning performance for two kinds of linear function
approximators representing the sensor vector (2) and for
a deep Q-learner which uses a neural network as a non-
linear function approximator. Although the given learning
scenario is solvable using linear Q-learning, it is worth to
include a non-linear function approximator. Despite the fact
that it needs longer training time, it is much more stable
under changes of its hyperparameters than the linear versions,
where a small change in the parameter space - especially in
the configuration of the function approximator - can hardly
undermine the learning process. For the case involving a
linear function approximator, we test our approach using
an ε-greedy Q-learning algorithm with eligibility traces and
linear function approximation [18]. The first more efficient
real valued representation is based on Gaussian radial basis
functions [19] (RBF). It represents the first three real-valued
dimensions of the state vector (2), which are the distances
between the target object and the tool’s picking locations, via
five uniformly placed radial basis functions per dimension.
The other three real-valued dimensions of (2), incorporating
the distances between the picking locations of the tool and
the domain’s origin, are expressed via three uniformly placed
radial basis functions per dimension. The standard deviation

2In the presented scenario, the position space corresponds to the task
space and the sensor space is defined through the state vector (2).
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TABLE I: List of the optimized parameters used for learning

Parameter RBF FSR Parameter DNN

ε 0.03 0.075 E 100000
α0 0.82 0.91 Estart 5000
αB 8459.74 59.52 Batch Size 32
γ 0.97 0.98 ε-decay 500000
λ 0.65 0.19 τ 200

α 0.00025
γ 0.95

Continuous Input

Dense Layer -
256 Neurons

Dense Layer -
256 Neurons

Concatenate
Dense Layer -
256 Neurons Binary Input

Q-Values

ReLu

ReLu

ReLu

ReLu

Fig. 2: Illustration of the designed deep Q-learner.

of each RBF is set to σ = 1. The binary part of the state
vector is integrated using a binary representation. This kind
of state representation segments the real valued state vector
into 13829 quantized features. The second is a simpler binary
fixed sparse representation [20] (FSR), which describes the
agent current state via 310 features.

For the case involving the non-linear function approxima-
tor, we use a deep Q-learner [15]. In particular, we use a
deep neural network (DNN) which is build out of 3 fully
connected layers with 256 neurons and a rectified linear unit
as the activation function. The used architecture is illustrated
in Figure 2. Similar to the linear representation based on
RBFs, we split the state vector (2) into a continuous and a
binary part. The continuous part is propagated through the
whole network so that suitable features for the representation
of the distances between the objects and the goal are learned.
The binary part only encodes the current picking location of
the agent and is thus uncorrelated to the objects distances.
As the binary representation can already be seen as a
very condensed and efficient feature vector, it is directly
concatenated with the generated features of the last layer.

The learning parameters are individually optimized for
each algorithm using random search [21] followed by ad-
ditional manual tuning, so that the reward within the reg-
ular learning runs without transfer learning is maximized.
The optimized parameters for the linear Q-learner are the
greediness ε , the eligibility factor λ , the discount factor γ ,
the initial learning rate α0 and the decay parameter for the
decay of the learning rate αB (Boyan-Decay [22]) are listed
in Table I. The optimized parameters for the deep Q-learner
are also listed in Table I. Here, we use a constant learning

rate α . The greediness is decaying linearly from 1 to 0.1.
As proposed in [15], we use a target network to compute
the gradient which receives a copy of the original networks
parameters every τ steps. The number of transition tuples
stored in the replay buffer for experience replay is given by
E , while Estart defines the minimal number of tuples that are
required to start the learning process. During training, the
weights are updated using the Adam algorithm [23].

For evaluating the efficiency of the learning processes, we
depict the average reward per episode 〈R〉 that is received
by the agent as a function of the number of learning steps.
To compute 〈R〉, the learning performance under the current
policy was evaluated over 100 episodes for each of the 25
evaluated data points. Note that during these performance
tests, the exploration parameter ε is set to 0 and only
the domain-specific noise is present. The results were then
averaged over 20 distinct learning runs, where the standard
deviation of the mean is used as the error. By using the
two evaluation metrics, presented in section IV, the learning
process of the mediated interaction scenario without transfer
learning can now be compared with the transfer learning
schemes into more detail.

VI. RESULTS

The results for a different number of source task con-
figurations Nsource are listed in Table II for the real valued
representation, in Table III for the binary representation
and in Table IV for the deep neural network. The first
notable point listed in both tables of the linear function
approximators is that the agent has just to solve the source
task one single time (Nsource = 1) to get a favorable seeding of
the Q-values that is sufficiently good enough to speed up the
target task. Increasing the number of source task problems
further optimizes the learning by reducing the reward loss
LR. The best performance, with a minimal LR can then
be achieved for Nsource = 50 (RBF), Nsource = 15 (FSR)
and Nsource = 100 (DNN). If Nsource gets large, the learning
process becomes too specialized on the source task. This
phenomenon leads to an increase of LR and the learning
time to reach the performance threshold up to a point where
the transfer learning process undermines the learning of the
target task. The extreme case of Nsource = 5000 suppresses
the learning of the target task for the learning process with
the binary representation and the deep neural network.

The learning performance of the deep Q-learner is shown
in Figure 3. As the deep Q-learner has much more weights
to train than the linear Q-learner, the learning is slower than
for the other two cases. Nevertheless, our (regular) transfer
learning scheme (Strategy 1) enables the agent to reach the
threshold performance after ≈ 220 · 103 learning steps and
a final performance of 〈R〉 ≈ 9 within the limit of 500 ·103

steps. The regular learning only reaches a final performance
of 〈R〉 ≈ 5 which corresponds to a probability of only 50%
to successfully solve the task.

For the linear Q-learning, adding scaffolding to the transfer
learning scheme (Strategy 2) is able to reduce the time

914



TABLE II: Evaluation of the learning process over 500 ·103

learning steps, using the real valued state representation
(RBF).

Used Scheme Nsource LR Time to Threshold

without transfer 0 105.1±15.08 ≈ 400 ·103 steps

1 44.79±8.16 ≈ 110 ·103 steps
15 31.18±5.62 ≈ 80 ·103 steps

regular transfer 50 28.985±5.33 ≈ 70 ·103 steps
100 33.035±5.67 ≈ 80 ·103

5000 60.1±6.11 ≈ 140 ·103 steps

1 42.32±5.67 ≈ 110 ·103 steps
15 33.71±4.33 ≈ 80 ·103 steps

scaffolded transfer 50 30.84±4.38 ≈ 60 ·103 steps
100 29.97±4.02 ≈ 60 ·103 steps
5000 63.04±4.99 ≈ 130 ·103 steps

TABLE III: Evaluation of the learning process over 500 ·103

learning steps, using the binary state representation (FSR).

Used Scheme Nsource LR Time to Threshold

without transfer 0 92.24±10.13 ≈ 200 ·103 steps

1 64.13±9.37 ≈ 140 ·103 steps
15 50.45±5.20 ≈ 60 ·103 steps

regular transfer 50 47.63±4.68 ≈ 60 ·103 steps
100 54.85±5.86 ≈ 120 ·103

5000 246.13±4.71 –

1 64.13±9.37 ≈ 130 ·103 steps
15 45±4.05 ≈ 40 ·103 steps

scaffolded transfer 50 53.435±4.82 ≈ 100 ·103 steps
100 58.96±4.64 ≈ 90 ·103 steps
5000 242.45±6.98 –

needed to reach the threshold performance again. The eval-
uated results for regular learning and scaffolded transfer
learning for the RBF representation are shown in Figure 4.
Both learning processes are able to achieve an average reward
of 〈R〉 ≈ 10. This corresponds to a probability of nearly
100% to successfully solve the mediated interaction task.
The learning curve in Figure 4 shows that the time to reach a
stable average success rate of 80% in the complex “mediated
interaction scenario” can be reduced from ≈ 400 · 103 to
≈ 60 · 103 learning steps by scaffolded transfer learning,
while regular transfer learning reduces the learning steps to
≈ 70 ·103.

For the binary representation (FSR), scaffolded transfer
learning is also able to again reduce the required training
time from ≈ 60 · 103 to ≈ 40 · 103 steps. The learning
performance of scaffolded transfer learning is compared to
regular learning in Figure 5.

For the deep Q-learner, the required time to reach the
threshold performance is increasing from ≈ 220 · 103 to
≈ 310 ·103 steps when using the scaffolded transfer learning
approach. However, the scaffolded approach is much more
robust on changes of Nsource, as now the learning runs with
Nsource = 50 are also able to reach a success rate above 80%.

TABLE IV: Evaluation of the learning process over 500 ·103

learning steps, using the deep neural network (DNN).

Used Scheme Nsource LR Time to Threshold

without transfer 0 201.41±16.37 –

1 158.13±17.90 –
15 123.38±15.00 ≈ 300 ·103 steps

regular transfer 50 149.02±17.80 –
100 106.18±10.63 ≈ 220 ·103 steps
5000 233.36±10.62 –

1 201.78±16.60 –
15 126.26±13.55 ≈ 310 ·103 steps

scaffolded transfer 50 139.76±15.07 ≈ 360 ·103 steps
100 134.265±15.22 ≈ 380 ·103 steps
5000 223.3±12.07 –
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Fig. 3: Comparison of the regular learning process with the
fastest transfer learning approach for the deep neural network
(DNN). The threshold performance is placed at an average
success rate of 80%.

VII. CONCLUSION

In this work, we investigated transfer learning for accel-
erating learning of mediated interaction tasks from learning
experience in unmediated interaction tasks. We found already
significant improvements combining a basic transfer learning
strategy with a reinforcement learner using Q-learning with
linear and non-linear function approximation. Structuring the
source task selection with a “scaffolding” strategy led to an
additional gain, totalling to a speed-up of almost one order
of magnitude for attaining nearly optimal performance in a
“extension-of-reach” tool-using task in a simulated 2D world
with physics.

We infer from these results that integration of structure
into the learning process of the source task is able to further
speed up the learning process. Additional studies have shown
that the degree of gain depends not only on the used kind of
representation but also on the quality of the used baseline. If
the learning performance of the agent is excellent from the
start, the learning speedup of the proposed learning strategies
is much less than applied when e.g. hyperparameters are not
well known. While the proposed transfer learning scheme
was only evaluated within a simplified but physically realistic
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Fig. 4: Comparison of the regular learning process with the
fastest transfer learning approach for the RBF representation
(RBF). The threshold performance is placed at an average
success rate of 80%.
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Fig. 5: Comparison of the regular learning process with the
fastest transfer learning approach using the binary repre-
sentation (FSR). The threshold performance is placed at an
average success rate of 80%.

toy world, we view the obtained results as encouraging
for bringing the general idea to speed up the learning of
object interaction scenarios by efficiently pre-learn relevant
subskills to more complex 3D domains and also to real-world
robot learning tasks.

Still, there are many open questions that might be investi-
gated, as e.g. the impact of the presented or similar transfer
learning strategies on learning algorithms different from Q-
learning.
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