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Abstract— Temporal stress is something that humans have
to face nearly every day. Humans have to handle situations,
where there is not much time left for a specific task. Most
robotic systems, on the other hand, are not able to act in
such temporally unstructured environments. For that reason,
we present the novel Temporal Stressing Fast Downward (TSFD)
planning system based on Temporal Fast Downward (TFD),
which solves temporal problems using a modified heuristic for-
ward search. With this planner, we introduce the novel concept
of stressed actions for temporally bounded problems. Stressed
actions enable a robot to accelerate or decelerate actions under
consideration of an action-specific temporal cost function and
the available time for plan execution. We further introduce an
improved decision epoch search that allows complete planning
with temporal gaps. Our evaluation in benchmark domains
and on the real humanoid robot ARMAR-III shows that
TSFD has the ability to produce plans of better makespan
than TFD and is able to solve problems that could not be
handled before. Furthermore, TSFD performs better in typical
service robotics tasks than baseline approaches. Finally, we
show that stressed actions greatly increase the possibility of
finding feasible solutions in temporally bounded tasks.

I. INTRODUCTION

In situations where humans have to solve complex tasks
in short amounts of time, they feel under pressure and
get stressed. In [1], Lazarus and Folkman describe human
stress as an ”internal state which can be caused by physical
demands of body or by environmental and social situations,
which are evaluated as potentially harmful, uncontrollable,
or exceeding our resources for coping”. Human beings are
able to perform well under temporal stress, because they
can estimate the duration of sequences of activities and
consider these estimates during planning. When exposed to
temporal stress, humans commonly accelerate their planned
actions in the intend of achieving the goal within the required
deadline. However, accelerated plan execution often comes
with increased risks of failure. This motivates our assumption
that the questions if and how much planned actions need
to be accelerated is a tradeoff between the proximity of
the temporal deadline and the tolerated risk of failure. The
ability of planning under temporal stress would allow robots
to perform tasks for which cost or risk requirements may be
bended through temporal acceleration of actions in order to
meet a defined deadline. Moreover, the possibility to define
temporal deadlines would potentially ease the communica-
tion between humans and robots.
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Fig. 1: The humanoid robot ARMAR-III [2] cooking scram-
bled eggs with a hard temporal deadline. The upper row
depicts an insufficient plan without accelerated actions. The
lower row shows a plan with accelerated actions that meets
the deadline. Accelerating actions has the disadvantage of
causing increased risk or cost. These acceleration effects
are pictured in each action’s cost function and color (green
means low cost, red means high cost). The actually planned
acceleration is marked with a red cross in each cost function.

An artificial planning system, which not only performs
classical planning (which actions should be executed?) but
also considers temporal information (when should actions
be executed?) is called a temporal planner [3]. Temporal
planning has been a long-standing part of the International
Planning Competition (IPC) [4]. However, in [5], Cushing
et al. showed that most of these planners share the ability to
produce high-quality but still suboptimal plans to temporal
expressive problems with required concurrency. Cushing
et al. attribute this to the incomplete Decision Epoch (DE)
planning approach. DE-planners are only able to schedule
new actions at the start of the problem or when another action
has finished, which minimizes branching to a small set of
decision nodes instead of allowing actions to be scheduled
at any point in time. Plans that must include temporal
gaps [5] cannot be found with this approach. Nevertheless,
DE-planners performed well on most tracks of the IPC. They
benefit from the fact that discretizing time into decision
epochs greatly decreases the complexity of the search space
and makes the application of heuristics and techniques from
classical planning feasible.

In this work, we propose an extension of the DE-planning
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approach, which allows newly scheduled actions to not only
start synchronously, but also end synchronously to other
scheduled actions. This approach still has the advantage of
limiting scheduling to a small number of decision epochs,
while enabling complete planning. Our proposed approach
is further capable of planning under temporal stress, which
implies that the planner is aware of action durations, action
accelerations and the potential effects of action acceleration.

Fig. 1 visualizes the process of action planning under
temporal stress in an experiment using the humanoid robot
ARMAR-III: The robot is given the task to cook scrambled
eggs within ten minutes. Classical planners would fail to find
a solution if none exists using unaccelerated actions. The
proposed planner TSFD is capable of accelerating actions
under consideration of measures of cost or risk, and would
therefore be able to find suitable solutions that meet the
defined deadline. To achieve the goal within the desired ten
minutes, the robot could e. g. highly accelerate the Stir
action and slightly accelerate the Putdown and Shift
actions.

The remainder of this paper is structured as follows:
We first introduce the formalisms of temporal concurrent
planning in section II. Afterwards, we explain the similarities
and differences to related approaches in section III. We
present our complete DE planning approach and describe
stressed action planning in section IV. Section V covers the
evaluation and discussion of the proposed planner. Finally we
conclude the paper and provide an outlook on future work
in section VI.

II. AN INTRODUCTION TO TEMPORAL PLANNING

Temporal planning can be seen as a generalization of
classical planning. In addition to the defined state fact list
state(s), a time-stamped state s contains a specific time-
stamp and a list of currently scheduled actions. Scheduled
actions are actions that have been started but are not yet
finished. A durative action a not only needs a list of at-start
preconditions which must be fulfilled before an action starts
and at-end effects which come into force after the action, but
also requires overall preconditions which have to be satisfied
during the entire operation and at-end preconditions which
must be fulfilled when the action ends. Moreover, a durative
action could have a list of at-start effects which are applied
after the action starts and a specific duration.

Because TSFD bases on TFD [3], it does not use PDDL
formulations of the planning instances directly. It prepro-
cesses the PDDL definitions into a formalism called temporal
numeric SAS+ (for Simplified Action Structures) [3][6].
SAS+ uses multi-valued state variables and handles logical
implications and arithmetic subterms via axioms. Axioms are
useful to minimize complex operations such as quantifiers or
derived predicates [7]. A temporal planning task can be seen
as a tuple Π = 〈V, s0, s∗,A,O〉, where:

• V is a set of time-stamped states,
• s0 is the initial state assignment of the problem,
• s∗ is a partial assignment defining the goal state,
• A is a set of axioms,

• O is a set of durative actions.
TFD accepts all features of PDDL 2.1 except user-defined
metrics and duration inequalities.

A solution to a temporal planning task is a collection of
plan steps, where each plan step S = 〈a, ts, te〉 contains a
durative action a ∈ O to execute, a timestamp ts which indi-
cates when to execute that action and a timestamp te which
indicates when this action ends. The planner guarantees that
each action of the solution plan is applicable at its starting
point. The final state after applying all plan steps must satisfy
the goal assignment s∗.

A plan is called concurrent if at least two actions are
planned to be executed concurrently. Solvable problems
require concurrency if all possible solutions are concurrent.
A problem is called temporally expressive if any solution to
the problem contains temporal gaps [5]. A planner is called
complete with respect to an action language L if for all
problems expressible in L, the planner guarantees to find
a solution if such a solution exists.

In order to prune away bad decisions at an early stage
and to guide the search, modern planners usually employ
heuristics. So do temporal planners, for which the possibility
of action scheduling over time potentially increases the
branching factor to infinity. A heuristic h : V → N0 ideally
approximates the optimal heuristic h∗, which returns the real
distance from a state s ∈ V to the goal (Note that temporal
planners usually estimate the remaining duration of the plan,
called remaining makespan). If there is no path to the goal,
h∗ returns ∞.

III. RELATED WORK

Since 2002, temporal planning systems participated next
to classical planning systems at the IPC. Temporal plan-
ning capabilities were introduced with PDDL 2.1 [8], an
extension to PDDL [9] for classical planning systems. The
first successful temporal planners of the temporal IPC tracks
ignored all temporal aspects and used classical planners like
Metric-FF [10] to find sequential paths to the goal (e. g.
SGPlan [11], MIPS [12] or LPG-td [13]). The scheduling
of actions was performed in a decoupled step independently
of the planning. These planners are not optimal for problems
which require concurrency. Planners that integrate scheduling
into the planning phase often produce higher-quality plans
regarding makespan, because they also consider plans that
cannot be rescheduled into sequential solutions. SAPA [14],
TP4 [15], TALPlan [16], TLPlan [17], SGPlan [11], TFD [3],
CRIKEY [18] or OPTIC [19] follow this approach. The
planner CRIKEY [18] actually uses a mixed approach by
employing fast classical search algorithms to find sequen-
tial arrangements of actions and switching to a temporal
approach if no sequential solutions could be found [5].

Since more and more complex temporal problems become
solvable, it becomes apparent that plan duration is not the
optimal metric for plan quality. For instance, TFD uses a
special representation of its closed list to find paths back
to the initial state allowing to sum up duration and cost of
actions in order to calculate heuristic values for the weighted
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(:action transport-fruits 
:parameters(?from ?to - location) 
:condition (and (truck-at ?from)) 
:effect (and 

(truck-at ?to) 
(when (> (current-time) (final-deadline)) 

(increase (total-cost) (full-penalty))) 
(when (> (current-time) (deadline-one)) 

(increase (total-cost) (part-penalty))) 
) 

)

Fig. 2: A time-dependent action definition in PDDL 3 as
used in OPTIC [19]

A∗ algorithm. However, due to DE-planning, TFD is not
able to return optimal solutions for temporally expressive
action languages. DE-planners distinguish between schedul-
ing epochs (also known as fattening epochs) and execution
epochs (also known as advancing time epochs). Actions can
only be scheduled during scheduling epochs and scheduled
actions only get executed in execution epochs.

Cushing et al. [5] describe another approach called Tem-
porally Lifted Progression Planning where they delay the
decisions about when to execute until all decisions about
what to execute have been made. Instead of scheduling an
action s to the current timestamp their algorithm TEMPO uses
a list of temporal constraints for each lifted state N of the
form τbegin(s) ≥ τ(N ) where τbegin denotes the start time
of the action and τ the current time of N . When advancing
time, a new constraint τend(s) ≥ τ(N ) gets added to the
lifted state before simulating the execution of the next action.
Just before terminating, TEMPO must actually pick some
particular assignment of times satisfying constraints(N )
for a goal assignment N . This technique allows TEMPO to
use a higher representation of time than the explicit one used
by other DE-planners.

OPTIC [19] uses mixed integer programming methods in-
stead of linear scheduling to arrange actions during planning.
To the best of our knowledge, OPTIC is the only modern
planner which is able to make use of time-dependent costs
during planning using soft deadlines. To do so it employs a
special state variable current-time accessible in PDDL 3
and the PDDL conditional when to define functions between
two deadlines in specific cost evaluation action as shown
in Fig. 2. The state variable current-time is updated
continuously once per time unit using a process with no
conditions and the effect (increase (current-time)
(* #t 1)). The PDDL instruction sometime after
f g guarantees that the final plan contains the action f
before its cost evaluation action g. Unfortunately, this ap-
proach cannot be used to adequately represent acceleration
and deceleration, because sometime after provides no
boundaries for a minimum or a maximum duration.

IV. APPROACH

With TFSD, we implemented a novel, complete planner
that is able to handle continuous duration-cost relations
during planning to find solutions to problems with deadlines.
In the following, we will first introduce the changes in

(:durative-action grasp 
 :parameters(?x - robotHand  
  ?y - location 
  ?z - obj) 
 :costfunction (= (-2 * a^2) +8) 
 :minacceleration (= 0.2) 
 :maxacceleration (= 1.5) 
 :discretizations (= 5) 
 :duration (= ?duration 2) 
 :condition (and (over all (handEmpty ?x)) 
  (over all (objAt ?z ?y))) 
 :effect (and (at end (inHand ?x ?z)) 
  (at end (not (handEmpty ?x))) 
  (at end (not (objAt ?z ?x)))) 
)

Fig. 3: Our modified PDDL 2.1 action definition. New tags
are highlighted in green.

PDDL which allow us to specify the required properties
for stressed actions. After that, we will describe how to
discretize stressable actions into stressed actions and com-
pare our improved DE-planning procedure to conventional
DE-planning. Stressable actions are high-level continuous
actions with known acceleration functions, fixed acceleration
bounds and one discretization value per stressable action.
The stressable action gets discretized into stressed actions
with a fixed acceleration and, therefore, fixed cost. Finally,
we will explain how TSFD works inside the robot software
environment ArmarX [20].

A. Planning with stressed actions

We introduce an extension of the PDDL action definition
that allows specifying a manually defined cost function in
relation to the acceleration of the action. This cost function
can be used by the planning algorithm to find solutions with
accelerated execution but higher costs or risk. These criteria
are usually anti-proportional and the search algorithm has to
find the cheapest solution while meeting the hard deadline.
The definition of the cost function is context-dependent and
could e. g. express the estimated energy consumption or risk
of an action depending on the acceleration factor. Given
several measurements at certain accelerations, one can define
a continuous acceleration function, which interpolates at
unknown values.

1) Modified PDDL syntax: We augmented the PDDL syn-
tax to also accept continuous function strings of the form y =
f(Aa) : A ∈ O within a specific :costfunction tag,
two single float values within a :minacceleration and
a :maxacceleration tag and an integer value within a
:discretizations tag. The function definitions depend
on a factor Aa ∈ (0,∞), called the acceleration factor for
an action A ∈ O. To the best of our knowledge, there is no
possibility to define continuous functions in plain PDDL 2.1
without duration inequalities. While the actual duration of
each stressed action gets divided by Aa to get the accelerated
duration, y denotes the used cost for that action and that
acceleration. Fig. 3 shows our changes compared to an orig-
inal PDDL 2.1 action definition. New tags are highlighted in
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Fig. 4: The way how TSFD discretizes stressable actions.
Black filled circles depict already accepted accelerations and
white filled circles show open candidates. Gray filled circles
picture the minimum and maximum acceleration. The arrows
above each candidate show the gradient to the next accepted
acceleration or boundary. The blue graph depicts the cost
function from its minimum acceleration up to its maximum
acceleration.

green. The usage of a mathematical expression parser [21]
during planning allows us to use mathematical operators,
functions, loops or variable definitions. Control structures
such as if-then-else allow different functions on dif-
ferent intervals. Unlike OPTIC, TSFD uses two boundaries
to limit the acceleration. These values assure that our planner
does not use accelerations faster than maxacceleration
or slower than minacceleration.

2) Discretization into stressed actions: Since the cost
functions are continuous, there is an infinite number of
possible action accelerations. However, the employed search
algorithm works on discrete actions. Therefore, TSFD dis-
cretizes each stressable action into up to n actions with fixed
acceleration factors. The parameter n is specified within the
:discretizations tag.

Although PDDL allows duration-changes of actions during
planning by using state-dependent durations, we assume that
each stressable action A has a fixed duration (most problems
of the IPC do so, too). TSFD discretizes A’s cost function
only once at the initialization of the algorithm, creating
several stressed actions with fixed acceleration factors Aa

and, therefore, fixed durations duration(A)
/
Aa and fixed

costs f(Aa). These discretized actions are stored within a list
of accepted operators which TSFD later uses for planning.
Because we only want to discretize actions in interesting
areas, the planner uses a binary approach similar to [22].
Fig. 4 depicts the process of discretization: For each action
A it uses the default acceleration Aa = 1 (node with
ID 1 in Fig. 4) as accepted root for the binary tree and
adds its both neighbors Afaster

a = (Aa + Amax)
/

2 (node
with ID 2) and Aslower

a = (Aa + Amin)
/

2 (node with ID
3) to a list of discretization candidates. Amin and Amax

describe the minimum accelerated action and the maximum

accelerated action, respectively. Afterwards, TSFD searches
for the candidate C with the highest information gain about
the duration-cost graph (maximum of distances of f(Ca) to
the next slower and the next faster already accepted action or
boundary) which gets added to the list of accepted operators.
In the example in Fig. 4, node 2 is already classified to have
a higher information gain than node 3.

After accepting this action, its both neighbors Cfaster
a

(node with ID 4) and Cslower
a (node with ID 5) are added

to the list of candidates. We repeat this procedure until all
candidates have an information gain < ε or until we have n
discretized operators. The list of candidates ensures, that old
neighbors, which have not been accepted in the first place
are still involved during the search for the best candidate and
may be accepted later.

3) Search with stressed actions: TSFD offers several
different modes of search. The first one is the default
for temporal problems: minimizing makespan. Therefore it
only uses heuristics which estimate remaining makespan.
The second one is minimizing a cost sum. This mode is
useful for stressed action planning with cost such as energy
consumption, where the robot has a hard deadline but tries
to find a solution which is as cheap as possible within this
deadline. Finally, the last mode is minimizing a cost product.
Like minimizing a cost sum, this mode is useful for stressed
action planning, but computes the product of all costs instead
of the sum. This is useful for multiplicative cost values, such
as probabilities.

B. Improved decision epoch search

The second contribution of this paper describes a modi-
fied DE search method to even find solutions to any kind
of temporally expressive problems. Other than usual DE-
approaches, where a new action can only be scheduled in the
initial state or when another action ends, we added further
decision epochs to our planning procedure so that a new
action can additionally be scheduled for a starting time in the
future (called future scheduling) or in the past (called past
scheduling) so that it ends synchronously to other scheduled
actions. In order to minimize branching, TSFD only allows
actions to be scheduled to end simultaneously with the next
coming decision epoch, which is always the earliest end of
all scheduled actions. In the following, we will explain, how
TSFD uses future- and past scheduling.Therefore, we assume
that TSFD starts expansion on a specific state s with an
already scheduled action B and an executed action A. ∆DE

denotes the difference of timestamps of s to the next decision
epoch. Figure 5 (c), (d) and (e) shows all possible derived
states during the search of our planning procedure after
scheduling an action C with a shorter duration than ∆DE to
s. Subfigures (f), (g) and (h) depict all possible derived states
after scheduling an action D with duration(D) > ∆DE to
s. All states with a different timestamp than s are either
future- or past scheduled states (except (b)). It is impossible
to schedule actions to start earlier than 0, which is why we
assume the already executed action A. Note that past- and
future scheduling only makes sense, when there is another
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(a) The assumed state before
scheduling any action. This state
contains a scheduled action B.
Executing action A in the initial
state leads to this state.
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(b) The first state derived after
executing the scheduled action B.
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(c) A new state derived after
scheduling action C to begin
shortly after the scheduled action
B.
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[current ts]

(d) A new state derived after fu-
ture scheduling C so that it ends
shortly before B ends.

BA

C
t = 0
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[current ts]

(e) A new state derived after fu-
ture scheduling C so that it ends
shortly after B ends.

BA

D

t = 0

t

[current ts]

(f) A new state derived after
scheduling action D to begin
shortly after the scheduled action
B.

BA

D

t = 0

t

[current ts]

(g) A new state derived after
past scheduling D so that it ends
shortly before B ends.

BA

D
t = 0

t

[current ts]

(h) A new state derived after
past scheduling D so that it ends
shortly after B ends.

Fig. 5: All derived new states after scheduling a new action C and a new action D to a state with an already scheduled action B
and executed action A (expanding a state with two different actions). Here duration(C) < ∆DE and duration(D) > ∆DE .
Current ts denotes the timestamp of the generated state. Actions with gray colors depict already executed actions.

scheduled action. While scheduling a new action at the
current timestamp s does not change the timestamp of the
derived state, scheduling an action to some point in the future
always increases the timestamp of the derived state by a value
> 0 and scheduling an action to the past will decrease the
timestamp by a value > 0. Subfigures (b), (c), and (f) depict
normal DE expansion, where either the already scheduled
action B gets executed or where action C respectively D
gets scheduled to start immediately after A (synchronously
to B).

Because we modify the timestamp of s when scheduling
action C to the future or action D to the past, we always
need the knowledge of how the derived state will look like
or looked like at that specific time. The first question is
very easy to answer because we only allow actions to be
scheduled to a timestamp between the current and the next
decision epoch. The definition of decision epochs disallows
state changes between two of those, so the new state will be
equal s, except for the increased timestamp and additionally
scheduled action and its at-start effects. To solve the latter,
we use the knowledge of predecessor states. Whenever we
schedule action D to a timestamp tpast in the past, we
backtrack to the first state spre with timestamp(spre) <
tpast and future schedule D to spre. We do not care if
this means that other already scheduled actions gets deleted
during backtracking (if they were scheduled after tpast),
because they may get scheduled again when expanding the
new state.

Unfortunately, this method disables TFDs heuristic
HCEA, which is temporally incomplete. It classifies states
to be dead-ends if the state has scheduled concurrency and
at least two scheduled actions have mutually dependencies.
In the following, we will call this kind of states temporally
expressive states. In order to still keep temporally expressive

states while searching for solutions with minimal makespan,
TSFD uses a temporal version of Hadd based on the relaxed
temporal planning graph [14] next to HCEA. The new
heuristic keeps the information about action durations while
HCEA is used to guide the search for minimizing makespan.
For solutions with minimal cost, TSFD uses cost estimations
instead of makespan ones. We modified hCEA so that it also
returns cost estimations if required.

C. Integration into the robot software environment ArmarX

We completely integrated TSFD into ArmarX [20]. This
robot-agnostic software framework was developed to ease
the realization of higher-level capabilities needed by complex
robotic systems such as humanoid robots. To use a symbolic
planner with a mobile robot in a dynamic environment, it is
necessary to perceive the state of the robot and environment
and maintain a consistent state representation. The memory
architecture of ArmarX, called MemoryX, provides these
capabilities and is used to generate a domain and problem
description for TSFD.

Each symbolic action of TSFD is produced by Object
Action Complexes (OACs) [23] stored in the long-term
memory of the robot. An OAC is a triple (E, T,M) where:

• E is an identifier for an execution specification,
• T : S → S is a prediction function defined on an

attribute space S encoding a model of how the world
(and the agent) will change if the execution specification
is executed, and

• M is a statistical measure representing the success of
the OAC in a window over the past, e.g. failure rates.

We augmented M to additionally store values for the lowest
and the highest acceleration and the cost function. Both,
T and M (even with our extensions), can be automatically
extended and updated using machine learning methods and
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Fig. 6: Results of TSFD (red squares) in comparison to TFD
(blue circles) and the best solution so far (black crosses) on
the parking challenge.

plan execution monitoring. The stored measurements in M
can be used to automatically extract acceleration functions.

Based on OACs and the perceived state of the environ-
ment, ArmarX produces PDDL code using its sub-framework
Spoac for symbolic planning with OACs [24] [25]. Once a
solution is found, ArmarX executes the plan and monitors
the action executions for failed actions. In case of failures,
Spoac triggers a search based on the currently perceived
world state.

V. EVALUATION

We carried out four different evaluation experiments. First,
we evaluated TSFD against TFD, showing that TSFD is
able to produce plans of higher quality. Second, we used
real-world benchmarks from ArmarX and measured the
runtime of our planner to find a solution in comparison to
PKS [26], the previous planning system of ArmarX. Third,
we evaluated planning with stressed actions in typical service
robotics domains. Finally, we evaluated the entire system
using the humanoid robot ARMAR-III in the exemplary
task of the preparation of scrambled eggs using TSFD and
stressed actions. For all benchmarks except the real robot
experiment, we used an Intel Core i5 CPU with 8GB RAM
storage running Ubuntu 14.04. We counted the best solution
which the planners returned within 300s. To make sure that
all returned PDDL plans of IPC domains are valid we used
the plan validation tool VAL [27].

A. Evaluation of TSFD against TFD

For our first evaluation, we use an official challenge of the
IPC 2014, where TFD failed to find the best solution, namely
the Parking challenge. During the IPC 2014 TFD constantly
returned suboptimal results on this specific domain. Unfor-
tunately, all challenges of the IPC are temporally simple [5],
which is why we also use a second benchmark containing
only temporally expressive domains first designed by [5].
The PDDL descriptions of the temporally expressive domains
can be found at https://goo.gl/RbVf5V. In [3], Eyerich et al.
already measured the runtime of TFD on IPC benchmarks,
showing that it is able to compete with other state-of-the-art
temporal planning systems.

Fig. 6 shows the results of our planning system against
TFD on the parking domain. TSFDs modified planning
procedure was able to produce plans of higher quality than
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Fig. 7: Results of TSFD (red squares) in comparison to
TFD (blue circles) on temporally expressive domains. A
missing node indicates, that the planner was not able to find
a solution.
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Fig. 8: Benchmark of TSFD (red squares) in comparison to
the PKS planning system (blue circles) on the wiping and
the graspAndPutdown tasks.

TFD. On several domains, TSFD returned even better plans
than the best participant of the IPC. Fig. 7 shows the results
of TSFD and TFD on temporally expressive domains. While
TSFD always found the best solution (the one with temporal
gap and required concurrency), TFD failed on all domains,
but the result also shows, that up to some degree TFD is
able to find plans with required concurrency. Both engines
explored the whole state space during the five minutes of our
benchmark.

B. Evaluation of TSFD against PKS

For our evaluation of TSFD against the PKS planning
system, we use custom domains as they are used in ArmarX.
We distinguish between a wiping task and a graspAndPut-
down task, both containing several problem definitions. Both
describe typical tasks for service robots. For the wiping
domain, our simulated robot ARMAR-III first has to request
a sponge from a nearby human. Afterwards, it has to move to
several locations and clean them using a Wipe action. For
the graspAndPutdown problems, ARMAR-III has to grasp
objects and put them to specific locations. The results are
shown in Fig. 8. Both tasks returned almost similar results,
hence we used only one graph to depict the results. In all
instances TSFD significantly outperformed the PKS planning
system, which completely failed for plans with length > 8.

C. Evaluation of planning with stressed actions

To show that TSFD is able to find plans with accelerated
actions we use the same wiping task as in section V-B. For
each problem and action, we use up to n = 10 discretized
operators. In [28] [29], Maniadakis et al. measured the
minimum and maximum execution time as well as the
robustness of each relevant action of the humanoid robot
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Name Duration [s] accmin accmax f(a)
Move 13.5 0.4 1.6 f(a) = a
Request 28.5 0.8 1.2 f(a) = 5a
Wipe 19 0.7 1.3 f(a) = 3a
Grasp 25.5 0.4 1.6 f(a) = 3a
Putdown 29 0.4 1.6 f(a) = 3a

TABLE I: Relevant actions for the service robot challenges
with corresponding acceleration and cost values [28] [29].

Problem Complexity Deadline [s] makespan [s] cost accavg
1 1 goal no 84.8736 6.8875 0.704
1 1 goal 61.5 60.9252 8.825 1.058
1 1 goal 50 49.0959 11 1.28
2 2 goals no 135.202 9.65 0.68
2 2 goals 94 93.517 12.65 1.07
2 2 goals 75 73.9364 16.125 1.305
3 3 goals no 185.53 12.4125 0.669
3 3 goals 139.5 139.248 15 1.007
3 3 goals 110 108.752 20.5 1.207

TABLE II: Problem instances of the wiping challenge and
TSFD’s results.

ARMAR-III in simulation. For our test we use the same
durations for highest or lowest accelerated actions as shown
in Table I. All other actions are pruned away during SAS+
preprocessing. Note that all those values are domain-specific
and do not correspond to accelerations, but we will use them
in an experimental manner here. The authors imposed them
while executing a breakfast preparation task.

Some of our results are shown in Table II. The problem
complexity simply corresponds to the number of surfaces
the robot has to clean. The first instance of each problem
uses no deadline, the second instance uses a deadline equal
to the minimum makespan when using unaccelerated actions
with Aa = 1 and the third instance uses a deadline close
to the fastest solution possible. The last column of Table II
corresponds to the average used acceleration of the returned
plan. One can see that TSFD decelerates its actions to Amin

when there is no deadline specified. On the other hand, it
accelerates its actions when we use deadlines.

D. Real Robot Experiment

In another experiment, we used the real humanoid robot
ARMAR-III for demonstrating planning with stressed actions
in the context of a breakfast preparation task. The experiment
demonstrates the integration of the TSFD planner into the
robot software environment ArmarX and its capability to
solve real-world problems with temporal constraints. The
experiment can be seen in the video attachment of this paper,
or under http://y2u.be/fspDIUZ4Ynw.

The robot first uses its episodic memory [30] to automat-
ically recognize that a human aims to prepare scrambled
eggs. In a dialogue, the robot offers its help and clarifies
the temporal deadline for the preparation (10 minutes). This
information triggers a temporally bounded planning task
using the available actions of the robot stored in MemoryX.
ArmarX creates a PDDL domain file containing the actions
as well as the known acceleration bounds and acceleration
functions, and a problem file containing the objects of

the prior memory as well as the goal (and (cooked
eggs)). The robot can only execute one action at once,
thus the planner returns a sequential plan. Nevertheless, the
robot tells the human to concurrently turn on the stove and
concurrently prepare the eggs while he is executing some
other action. All other action are performed by the robot.

To be able to execute the given task in only ten minutes
the planner uses stressed actions. Every plan without stressed
action exceeds the limit of ten minutes, hence planning is
only possible if the PDDL domain file contains acceleration
information. For this specific task we estimated the accelera-
tion bounds and acceleration functions (returning risk values)
based on the measured data within the OACs. Note that for
the real robot, these values differ for from those shown in
Table I.

E. Discussion

Our evaluation shows that plans returned by TSFD may
have better quality than plans returned by TFD. Never-
theless, all returned solutions for the parking challenge
are temporally simple, which means that TSFDs improved
search procedure is not responsible for better results. We
assume that in this special case the heuristic Hadd proved
better pruning techniques than HCEA. The results of the
temporally expressive domains show, that TFD fails to find
shortest plans on most temporally expressive domains even
with a completely explored state space. The reason is that
first HCAE is not able to classify temporally expressive
states correctly and second TFDs search procedure does not
produce temporally expressive states.

The evaluation of TSFD against the PKS planning system
shows that, due to a heuristically improved search, TSFD
returns plans much faster, especially on more complex tracks.
Although PKS is a highly optimized planning system, it only
uses a breadth-first search. Due to the optimizations of PKS
TSFD has a bit worse performance on easy tracks (0.1s
slower). Another reason for this is that we also measured the
time to translate the problem into temporal SAS+. PKS uses
its own problem description language without preprocessing
such as useless variable or action pruning. Hence, the usage
of TSFD provides better performance on more complex tasks
and additionally enables features such as temporal planning
and numeric planning.

The third evaluation experiment showed that TSFD ac-
celerates actions when there is less time and decelerates
them when there is enough time. During all our test
with deadlines, TSFD decides to decelerate the action
RequestFromHuman up to some degree. That is little
wonder since this action has the highest impact on the total
cost (f(a) = 5a). But it is interesting up to which value
TSFD accelerates this action. For the medium deadlines it
decelerates the RequestFromHuman action to a = 0.95,
a = 0.9 and a = 0.825 and accelerates the move action.
The gradient of this deceleration shows that TSFD only
accelerates actions to the minimum or maximum value if
there is enough time left. During the first problem, there were
simply too few other actions than RequestFromHuman to
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decelerate it further. The more actions the optimal solution
contains, the more can TSFD make use of acceleration and
deceleration to reduce the cost of the solution.

The real robot experiment using ARMAR-III showed that
stressed actions can be used to accelerate the task execution,
if there are hard deadlines. Our robot successfully cooked
scrambled eggs in 10 minutes, because it accelerates some
of its actions. Moreover, this video shows that TSFD is
applicable in complex, real-world scenarios within the robot
software framework ArmarX.

VI. CONCLUSION AND FUTURE WORK

We successfully augmented the TFD planning system with
stressed actions and improved its DE planning procedure
to also find solutions to temporally expressive problems.
Unfortunately, the heuristic HCEA is not able to classify
states with required concurrency and mutually dependent
actions correctly, which is why we implemented our own
version of Hadd based on the relaxed temporal planning
graph. Although this heuristic has worse qualities in pruning
and evaluating heuristic values, it keeps temporal expres-
sive states. The usage of multiple heuristics at the same
time assures the planner to benefit from the strengths of
both heuristics. To the best of our knowledge, this is the
first complete approach based on classical decision epochs.
Moreover, we argued that stressed action planning is useful
for temporally bounded tasks and showed, that our planning
system is able to find such solutions.

During the real robot experiment, we estimated values for
minimum and maximum accelerations of the robot’s actions.
We plan to use them as well as resulting failure rates and
changed energy consumption statistics in order to define
improved risk functions for real robot experiments. Second,
real-world applications are usually imprecise and noisy. The
usage of a probabilistic planning approach could improve
resulting plans and plan execution, particularly because our
used sensor model in ArmarX already supports unsharp
world states. Finally, TSFD does not include planning time
to makespan. For that reason, the goal-achievement-time of
our planner, the sum of planning time and plan makespan,
usually exceeds the defined deadline. Inspired by recent
contributions, e. g. [31], we aim to integrate planning search
time to makespan and to reason about expected makespan
for specific branches during search space exploration.
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[23] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
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