
Motor Program Learning for Humanoid Robot Drawing

Deepanshu Makkar, Payam Atoofi, Fred Hamker, and John Nassour

Abstract— How do robots generalize the acquired motor
representation in the workspace? In this paper, we present a
framework that generates motor patterns for drawing arcs in
the Cartesian workspace. The basic combinations of patterns re-
sulting in a desired arc has been shown, where the patterns are
generated by a Central Pattern Generator (CPG) model. The
optimization of those combinations using Genetic Algorithm
(GA) and then applying Inverse Distance Weighting (IDW) for
generalization in the workspace are further discussed. However,
due to the limitations of the aforementioned algorithms in the
generalization of motor program, we proposed an approxima-
tion function using multilayer perceptron (MLP) to map the
features of the trajectory of an arc into a corresponding motor
parameters. After learning, we present scenarios, in which a
humanoid robot, NAO, draws sketches in a 2D space. Unlike
classical methods that use inverse kinematics to draw arcs
through connecting several intermediate points in the Cartesian
space, our proposed model generalizes the motor features of the
pattern generator in the workspace.

I. INTRODUCTION

Robots move by executing a temporal sequence of motor
commands that is sent to each joint involved in the action.
There are two ways to generate that sequence, the first uses
an inverse model to calculate the exact joint positions and
velocities for every time step. The second uses a forward
representation to build a model-free mapping. The ensemble
of joints’ variations over time is called motor program.
Keele has described motor program as a sequence of muscle
commands that generate a desired motion without sensory
feedback [1]. However, the motor program needs to be
scalable, transferable, and generalizable. Therefore, a simple
time-dependent variation will not be sufficient to represent
an adaptive motor program. Yet the less parameters the
motor program has the easier to be generalized. The Central
Pattern Generator (CPG) is one of the examples of motor
program [2]. CPG is referred to a set of interneurons located
in the spinal cord of vertebrates, these neurons are able
to produce patterns without sensory feedback [3]. Different
mathematical CPG models have been proposed to control
robots’ legs and arms [4], [5], [6]. Motor program was also
described using so-called Dynamic Movement Primitives
(DMPs) [7], [8]. Pastor et al. generalize the grasping motor
skill through demonstration [9], a velocity-based inverse
kinematic model was used to generate the DMPs. In addition
to each joint’s motion patterns, motor program includes the
coordination of body parts to perform that motion. Spatio-
temporal coordination in the motor program determines how
patterns at different joints are scaled in the joint space
and synchronized in time while keeping other features of
the pattern unchanged [10]. The generalization of motor
program through its coordination parameters is a challenging

Fig. 1: Block Diagram for Sketch Drawing. The schematic
illustration encapsulates the framework, where the image
would undergo an image processing routine and its features
would be extracted using line and arc segment detector, from
which the elliptical- and circular arcs would be selected and
transformed from image space to workspace. The features of
the arc would then be sent as an input to a trained neural
network (multilayer perceptron), whose output provides the
parameters of a motor program. The motor primitives are
generated by a CPG model (ML-MP CPG), and the per-
formed action would ideally result in a trajectory similar
to the desired arc. The output of the neural network would
be considered as the control signal that manipulates the time
constant in RG layer (in blue) and the slope of the sigmoid in
PF layer (in red). https://youtu.be/fC7GGPRaXO4

problem in robotics. In this paper, we address the general-
ization of motor program in humanoid robot drawing, see
Fig. 1. The concept of motor program shows an advantage
in generalization as opposed to traditional methods used
to solve robot drawing task, e.g., model-based algorithms.
Calinon et al. proposed a framework for humanoid robot
capable of sketching [11]. In their approach, the trajectory
planning was based on inverse kinematics. Singh et al. has
also implemented an inverse kinematics approach for sketch
drawing [12]. Bertram et al. has applied Rapidly-exploring
Random Trees (RRTs), where the robot’s joint configuration
needs to be fed to RRTs [13]. The output is the inverse
kinematics configuration. This method would not find the
best solution rather it finds different paths to reach the

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7282-2/18/$31.00 ©2018 IEEE 887

end effector, hence it can have multiple solutions which
can be computed in a fixed time frame. Although model-
based approaches are more accurate than model-free ones,
the executed motor movement cannot be used in a new
context. Yet in the model-free approaches the data needs
to be gathered by robot experiments or demonstrations, e.g.
imitation learning. Tan et al. have applied imitation learning
to make the robot learn how to write numbers (0 to 9),
whose motor primitives were generated based on Dynamic
Movement Primitives (DMPs) [14]. Probabilistic methods
such as Gaussian Mixture Regression and dimensionality
reduction technique can also be together used to generalize
the robot’s task trajectory acquired by demonstration [15].
Atoofi et al. have used Genetic Algorithm to optimize
the action of drawing straight lines, generated by a CPG
model [24]. Furthermore, applying Inverse Distance Weight-
ing (IDW) has improved the estimation of the motor program
parameters provided by a self-organizing map (SOM).

To address the generalization of motor program in robot
drawing, we first present in Sec. II a framework for pattern
generation which was used previously to control robot’s
legs and arms for rhythmic and discrete motions [6], [16].
Section III addresses the generalization of motor program
using different algorithms. A multilayer perceptron (MLP)
has been used to create a neural network representation of
motor program for drawing arcs in a 2D space. In Section
IV, it is shown how the trained neural network (MLP) has
been used on a simulation and a real robot in order for the
robot to draw a sketch of the observed image comprising
of arcs. The image processing aspects of the project is also
discussed. Conclusion is provided in Section V.

II. MOTOR PROGRAM

As discussed in Sec. I, motor program is formed before
an action takes place, where its sequence can be stored in
memory, and later can be executed without sensory feedback.
This sequence of movement is also called motor primitives,
suggested by Tamar [17], which are the building blocks in the
motor hierarchy. By employing appropriate transformations
and operations on the motor primitives, a variety of different
movements can be derived, and stored in the motor reper-
toire; and further be used to make more complex patterns.
Repetition and practice will correct the motor program so that
an action becomes more accurate, which ultimately creates
a more reliable motor repertoire consisting of several motor
programs [9]. The motor repertoire with its stored move-
ments would be used later to perform skills that might require
a combination of movements. Since CPGs are considered to
follow the definition of motor program, in this study the
motor primitives are generated with a computational model
of CPG based on [18]: Multi-Layered Multi-Pattern CPG
(ML-MP CPG). The CPG has been used in two joints of an
arm in a humanoid robot, NAO, where the joints are selected
in a way that the motion resembles a two link planar arm.
The CPG model is able to generate both rhythmic and non-
rhythmic patterns, which creates the possibility to have a

wide range of motor primitives. A brief insight to the model
is given hereinafter.

A. Motor Primitives Generation and Pattern Generation
Model

The architecture of the CPG model is based on the sep-
aration of timing and activation of motor cycles, influenced
by [19] for two level CPG. The applied CPG model consists
of three layers of neurons: Rhythm Generation Layer (RG),
Pattern Formation Layer (PF), and Motor Neurons (MN).

Rhythm Generation Layer: RG neurons are responsible
for the generation of various motion patterns, e.g. Quiescent,
Oscillatory, Plateau, etc. [21], see Fig. 1. The RG neuron
model is represented by two differential equations (1) and
(2):

τm.
dU

dt
= −(U −Af tanh((σf/Af)U) + q − iinj), (1)

τs.
dq

dt
= −q + σs(U − Es), (2)

where U is the membrane potential, q is the lumped slow
current, τm is the membrane time constant, τs is the slow
current’s time constant (τm < τs). σs and σf are the
potassium and the calcium conductances, respectively. Af
is the width of the N-shape of the current-voltage curve. A
pattern is triggered by an injected current iinj to the RG
neuron.

Pattern Formation Layer: The neurons in the PF layer
shape the patterns generated in RG layer for both flexion and
extension [22]. PF neurons are modeled as sigmoid activation
functions:

UPF =
1

1 + eαPF(θPF−(wRG→PF·URG))
, (3)

where UPF is the output of the PF neuron, and URG is
the output of the RG layer given by (1) and (2), which is
influenced by the strength of the connection between the two
consecutive layers with the weight wRG→PF. αPF and θPF

are the slope and threshold of the sigmoid activation function,
respectively.

Motor Neurons Layer: The Motor Neurons (MN) perform
the flexion and the extension movements of the joint, where it
receives signals from PF layer and also sensor neurons. The
neurons in this layer are also modeled similar to neurons in
PF layer as sigmoid activation functions:

UMN =
1

1 + eαMN(θMN−(wPF→MN·UPF+wSN→MN·S))
, (4)

where UMN is the output of the MN neuron, and UPF is the
output of the PF layer given by (3), and the weight wPF→MN

represents the strength in connection between these two
layers. Similarly, αMN and θMN are the slope and threshold
of the sigmoid activation function, respectively. S is the value
of the sensory feedback provided from sensory neurons,
which is 0 in our case, and the strength between the current
layer neurons and sensory neuron is shown by the weight
wSN→PF. Therefore, the outputs of each layer only alter

888

with the signals from the previous layer plus the high-level
controller that modulates their parameters, e.g. slope and
threshold. Particularly the αMN, θMN and θPF were fixed
and remained unaltered throughout the whole study, whereas
the αPF was assumed to be modulated from the high-level
controller, hence the ability to change the amplitude of the
signal generated by RG layer.

Fig. 2: Each motor program consists of a variety of motor
primitives of the involved joints. Arcs are drawn using only
plateau patterns. Although the patterns remain the same in
their nature, but RG parameters could change the speed of
the non-rhythmic patterns, as well as the phase and direction
of each pattern, providing the opportunities to have signals
sent to each joint at different time with an arbitrary delay.
Furthermore, in PF for instance, the amplitude of each pattern
can be adjusted. These blocks of patterns, with different
timing and activation would provide us with the possibility
to have a vast range of actions. Here an example of single
primitive per joint (left) is provided where the different speed
in the patterns in each joint has led to a trajectory of an
arc, whereas a slightly more complex scenario (right) of
having two successive primitives at the Elbow could provide
a different arc.

B. Selection of Motor Primitive

The designed task as mentioned earlier is for a humanoid
robot to be able to draw sketches consisting of arcs. Two
joints in the left arm (Shoulder Roll and Elbow Roll) of
a humanoid robot, NAO, would guarantee a two link planar
motion. Each joint with its own CPG is capable of generating
variety of patterns each with different amplitude, speed in
non-rhythmic and frequency in rhythmic patterns, phase and
direction. Any combination of these patterns could lead to
a new action. The task of finding which combination of
patterns could result in the desired action can be a rather
complex task even in a manipulator with two degrees of

freedom. However, for drawing arcs only plateau patterns
were chosen to be in the motor program. Drawing desired
arcs is not necessarily possible with only one pattern for each
joint as their motor primitives, see Fig. 2 (left). Depending
on the starting point of the arc and its other features a more
complicated motor program is needed, e.g. one pattern in
Shoulder Roll and two patterns in Elbow Roll as their motor
primitives, see Fig. 2 (right). The exploration of the whole
parameter space to obtain the best motor program for a
desired action, whether it is just the RG parameters and their
combinations or RG parameters and PF parameters together,
is not feasible due to the immensity of the dimension of
the available parameters, especially if more than one pattern
is generated at each joint. The best approach is to limit the
number of modifiable parameters in each layer and also limit
the possible combinations of generated patterns at each joint.
Hence, in this work only the slope of sigmoid in PF layer,
αPF, the direction of the injected current, iinj = {−1,+1},
and time constant, τm, in RG layer have been subjected to
changes; however in case of having more than one pattern for
a joint, the delay between the first generated pattern and the
second forthcoming pattern needs to be taken into account.

III. MOTOR PROGRAM GENERALIZATION

The task regarding drawing arcs in the reachable
workspace of the left arm of NAO, is not only a multi-
objective task, in that the features of an arc are represented
as a vector, but also could consist of combination of motor
primitives for each joint, hence more parameters available
for control. The first step toward evaluation of an action, to
measure its success or failure, is to define an error function.
The error function allows us to evaluate whether the result of
an action is close to the desired action. In a sketch drawing
task, humans would not consider the mathematical definition
of an “elliptical” arc, rather only the resemblance between
the resulted trajectory and an arc. Yet to define an error
function as close as possible to our understanding of how
a human evaluates an arc in a sketch drawing task, two
different approaches have been applied. The simplest method
to measure the difference between a trajectory resulted from
an action and the desired trajectory (in this case a desired
arc) is to have the distance of each point on the desired arc
to its corresponding point on the drawn trajectory. However,
such approach undermines many traits of an arc, ergo a
vector of features of an arc is introduced to be measured
and compared with that of a desired arc, i.e. the sum of
the distances between the points on two trajectories (desired
and obtained) cannot properly reflect the nature of an arc.
Hence the vector of features regarding a trajectory could be
represented as following:

varc =
[
x0, y0, xe, xe, l, dp, δp, β

]T
, (5)

where x0, y0, xe and ye are the x−y Cartesian coordinates of
the starting point and end point of a trajectory, respectively.
The length of the trajectory is given by l. The value of
dp provides the distance between the peak of a trajectory

889

and the line connecting the starting and end point of said
trajectory, whose sign would determine whether the peak is
below the connecting line or above it, and it was obtained by
the assumption of trajectories rotating counter-clockwise, i.e.
a trajectory rotated around its starting point would always
have the same dp. The counterpart of dp, δp, is another
value, whose absolute is the distance from the midpoint
of the line connecting start and end of a trajectory to the
projection of the peak on the same line, and its sign would
determine if the projection is closer to the start point or to
the end point of the trajectory. β is the angle of the line
connecting starting and end point of a trajectory. Regardless
of the measurement technique to evaluate the performance
of an action, to improve an action new set of parameters of
a motor program needs to be acquired that reduces the error
calculated between the desired- and obtained trajectory. [?]

A. Motor Program Optimization

One way to find the correct motor program and its
corresponding parameters is through optimization, by trying
to reduce the error generated from the trajectories to reach
the action that would result in the desired trajectory (desired
arc). For simplicity it was assumed that the error is calculated
based on the distances of each pair of points between
the two trajectories (desired and obtained). The first stage
of optimization was done on motor programs with single
primitives per joint. The parameters involved are the slope
of the sigmoid in Pattern Formation layer, the time constant
and the direction of injected current in Rhythm Generation
layer, in both Shoulder Roll and Elbow Roll, i.e. αSR

PF, τSRm ,
iSRinj , αER

PF , τER
m and iER

inj . Since the direction of iinj can be
combined with the amplitude of the signal to create one
general parameter that encapsulates both sign and amplitude,
the αPF and iinj will be represented as one parameter that can
be both positive and negative, ergo the number of parameters
in optimization is four, two for each joint: αPF and τm. In
addition to the selection of parameters in optimization and
the error function, the optimization method should also be
suitable for the assigned task. Knowing that the derivative of
evaluation function is not available, the Genetic Algorithm
(GA) has been chosen as it is a derivative-free optimization
technique. Although the time for injected current for both
motor primitives (one for each joint) are the same, due to
the difference in values of τSRm and τER

m , both joints start
at the same time but may finish at different times, i.e. dif-
ferent speeds. The results of the GA optimization for single
primitive per joint are shown in Fig. 3 (left). The fitness
function as explained previously is the sum of the Euclidean
distances between each point on the desired trajectory and its
corresponding point on the obtained trajectory, see (6). All
the points on each trajectory are interpolated, using B-spline
[23], to guarantee that the points in the vectors representing
the trajectories are equally distributed along their trajectory.
In (6), pdesired

i and pobtained
i are the points on the desired-

and obtained trajectory, respectively. The first population of
GA (initialization) is selected via random values for αPF

and τm. The selection is done by tournament selection, and

polynomial mutation is chosen for mutation process.

n∑
i=0

‖pdesired
i − pobtained

i ‖ (6)

As it can be seen for certain arcs, the GA cannot provide
desired results, e.g. the arcs that are on or close to the borders
of the regions where the direction of the iinj is changing, see
Fig. 3 (left). Therefore, a more complicated motor program is
introduced. Elbow roll joint will have a sequence of two CPG
patterns, while we keep using a single pattern for shoulder
roll joint, an example is shown in Fig. 2 (right). In such
case, the delay between two consecutive signals also plays
a role, however for simplicity we assume that the second
motor primitive starts when the first motor primitive ends,
since all motor primitives generate plateau patterns. Hence
the number of parameters in optimization would increase by
only two: αPF and τm for the new motor primitive in Elbow
Roll. The results of optimization for those particular cases of
having multiple-motor primitives are shown in Fig. 3 (right).

Fig. 3: Optimization of 16 arcs with genetic algorithm using
a single primitive per joint (left), and using two primitives
for the elbow “e” and one for the shoulder “s” (right).

B. Neural Network Representation of Motor Program

To generalize the obtained motor programs over the
workspace (e.g. drawing the same arc at a different starting
position) or to use them to develop a motor program for a
new arc at the same starting position (e.g. arcs rotated around
their starting positions), a linear mapping is not sufficient,
as the quality/nature of the motor primitives’ parameters are
different. The use of Inverse Distance Weighting (influenced
by [24]) also has not led to a successful result, because
the IDW could not be applied on a multi-objective task,
as well as the simplicity of Euclidean distance as the sole
error function would mask the other features of the drawn
trajectory as an arc. To generalize motor programs and have a
representation of workspace, an MLP (multilayer perceptron)
neural network has been employed, with 8 input neurons, 4
output neurons, and 3 hidden layers, each layer with 100
neurons. The input vector is given in (5), and the output
vector is a vector of motor primitives for both joints, see
(7), as it can be seen in Fig. 4.

voutput =
[
αSR
PF, τ

SR
m , αER

PF , τ
ER
m

]T (7)

890

The training data is collected by randomly selecting starting
positions on the reachable workspace for 300 different points
and for each point to assign 300 random sets of motor
primitives which resulted in random trajectories, provided
the random motor primitives are all essentially plateau pat-
terns, i.e. random selection of αPF ∈ [−0.06, 0.06] and
τm ∈ [0.01, 1.0] for each joint (SR and ER). The significant
features of each of these random trajectories would be
calculated and stored as a vector, (5). “Sigmoid” was used
as an activation function and “Adam” optimiser is used for
optimising the loss with α value to 0.06. After training with
a data set of size 90,000, the small difference between the
training loss by 0.2865 and the validation loss by 0.2987
ensured that the model is not overfitting.

Fig. 4: MLP neural network with the illustration of the input
vector. The network has 4 outputs, 2 for shoulder roll joint,
and 2 for elbow roll joint (top). Histograms of the error for
the output neurons are presented (bottom).

IV. EXPERIMENTAL RESULTS

The MLP network has been tested on both simulation
and real robot. In both cases an image processing routine
has been applied in order to extract necessary information
and also to transform the data in image space into Cartesian
space.

A. Image Processing

The collected image, for instance from NAO’s camera,
is sent to a feature extraction routine, where the lines and
elliptical arc segments are found. The method of use is
proposed by [25], which is based on the a contrario approach
and can be seen as an extension to Line Segment Detector
[26]. Due to the design of the task, only the elliptical-
and circular arcs are of importance. The next step is to
transform the data such as starting and end point of an arc
on the image space to the Cartesian space, where a simple
projective transformation has been applied to map the frame
of the image (rectangle) to a rectangle inside the reachable
workspace. Having chosen the four corners of the rectangle
in the workspace, any point can be then transformed from
the image to lie inside the rectangular area in the workspace.
Finally, the vector of arc features will be calculated and
would be given to the MLP, which would then provide the
motor program parameters for each segment detected on the
image, see Fig. 4.

B. Results on Simulation and Real Robot
Figure 5 shows the results of the network in simula-

tion, where the first column (from left) shows the images,
the second depicts the results of feature extraction from
the given image, third column shows the transformed seg-
ments extracted from images into Cartesian space, where
the four corners of the rectangular area of workspace are
(161, 48), (161, 166), (206, 166), (206, 48). The last column
shows the results of the actions of the motor programs, whose
parameters are provided by the MLP. On the real robot, the
same steps from feature extraction to mapping the features
on the Cartesian space has been applied, and the results of
the actions of the provided motor program from MLP to
generate arcs with given features are shown in Fig. 6.

Original image Extracted features Scaling to the workspace Simulation drawing from the CPG

Fig. 5: Drawing in Simulation

Fig. 6: Drawing with Real Robot

In Fig. 5 four different images are provided: a tree, NAO
robot, a mug, and a pair of glasses. The feature extraction
routine has detected 45 arcs for the tree, 98 arcs for NAO
robot, 11 arcs for the mug, and 18 for the glasses. The
feature vector for each of the arcs in each of the images
has been created and passed to the MLP. After that the MLP
has provided a set of parameters for each arc, the result of
the performed action is then evaluated by a new vector of
features for the obtained trajectory. To measure the accuracy
of the results of the action, the difference between the desired
vector of features and the obtained vector is calculated by:

Error =
‖v̂Obtained

arc − v̂Desired
arc ‖

‖v̂Desired
arc ‖

, (8)

where v̂arc is a vector of normalized feature elements,
each of which is normalized by the maximum and minimum

891

values of the collected data used for training the MLP.
Hence, in the performance to draw the tree, the average
error of 0.186, equivalently the accuracy of 81.4%, has
been obtained, with the minimum error of 0.0107 (accuracy
98.9%) and maximum error of 0.9905 (accuracy 0.9%). As
for the robot picture, the average error of 0.132 (accuracy
86.8%), with the minimum error of 0.0048 (accuracy 99.5%)
and maximum error of 0.9795 (accuracy 2.05%), has been
obtained. The performance to draw the mug and the glasses
produced the average error of 0.150 (accuracy 85%), with the
minimum error of 0.015 (accuracy 98.5%) and maximum er-
ror of 0.724 (accuracy 27.65%), and 0.109 (accuracy 89.1%),
with the minimum error of 0.0117 (accuracy 98.8%) and
maximum error of 0.9765 (accuracy 2.07%), respectively.

V. CONCLUSION

The combinations of motor primitives are essential to
perform complex actions. This paper discusses the difficulty
of finding the proper parameters for these primitives and the
generalization of the motor program. A CPG model is used
to generate the motions and each CPG pattern generated in
a joint is considered as a single primitive. An MLP neural
network has been implemented, whose inputs are the features
of a trajectory as an arc, and the coordination parameters
as its output. The idea of generalization has always been a
challenge in robotics. One of the problem arose from the
large number of parameters is the curse of dimensionality,
which always demands methods for dimensionality reduction
to reduce the size of the search space. There are empiri-
cal experiences and innovative ways, which would help to
further limit the number of primitive parameters that are
involved and contribute to the varying patterns as variables.
For instance, the spatio-temporal coordination parameter that
combines both the direction of injected current and the slope
of the sigmoid in pattern formation layer, represented as one
variable. This could be achieved by using a multi-layered
CPG model, another advantageous property that DMPs do
not possess. As a result one could easily control the spatio-
temporal coordination without affecting the nature of the
patterns. This work is a stepping stone toward a more
sophisticated framework where a robot can draw a sketch
comprising of simple and complicated shapes, e.g. lines, arcs,
etc. Our future work will involve more complex patterns
to perform a better matching of the desired end-effector
trajectory.

REFERENCES

[1] S. W. Keele, “Movement control in skilled motor performance.”
Psychological bulletin, vol. 70, no. 6p1, p. 387, 1968.

[2] M. E. Morris, J. J. Summers, T. A. Matyas, and R. Iansek, “Current
status of the motor program,” Physical therapy, vol. 74, no. 8, pp.
738–748, 1994.

[3] T. G. Brown, “On the nature of the fundamental activity of the nervous
centres; together with an analysis of the conditioning of rhythmic
activity in progression, and a theory of the evolution of function in
the nervous system,” The Journal of physiology, vol. 48, no. 1, pp.
18–46, 1914.

[4] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008.

[5] S. Degallier, L. Righetti, S. Gay, and A. Ijspeert, “Toward simple
control for complex, autonomous robotic applications: combining
discrete and rhythmic motor primitives,” Autonomous Robots, vol. 31,
no. 2-3, pp. 155–181, 2011.

[6] S. Debnath, J. Nassour, and G. Cheng, “Learning diverse motor
patterns with a single multi-layered multi-pattern cpg for a humanoid
robot,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS
International Conference on. IEEE, 2014, pp. 1016–1021.

[7] S. Schaal, “Dynamic movement primitives - a framework for motor
control in humans and humanoid robots,” in The International Sym-
posium on Adaptive Motion of Animals and Machines, 2003.

[8] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, Feb
2013.

[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
2009 IEEE International Conference on Robotics and Automation,
May 2009, pp. 763–768.

[10] A. P. Georgopoulos, “Cognitive motor control: spatial and temporal
aspects,” Current Opinion in Neurobiology, vol. 12, no. 6, pp. 678 –
683, 2002.

[11] S. Calinon, J. Epiney, and A. Billard, “A humanoid robot drawing
human portraits,” in 5th IEEE-RAS International Conference on Hu-
manoid Robots, 2005., Dec 2005, pp. 161–166.

[12] A. K. Singh, P. Chakraborty, and G. Nandi, “Sketch drawing by nao
humanoid robot,” in TENCON 2015-2015 IEEE Region 10 Conference.
IEEE, 2015, pp. 1–6.

[13] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant manip-
ulators,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on. IEEE, 2006, pp. 1874–1879.

[14] Q. D. Huan Tan and N. Wu, “Robots learn writing,” Journal of
Robotics, vol. vol. 2012, p. 15 pages, 2012.

[15] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.

[16] J. Nassour, P. Hénaff, F. B. Ouezdou, and G. Cheng, “A study of
adaptive locomotive behaviors of a biped robot: patterns generation
and classification,” in Proceedings of the 11th international conference
on Simulation of adaptive behavior: from animals to animats, ser.
SAB’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 313–324.

[17] Z. Pan, Y. LishanKang, G. Liu et al., “Parameter estimation by genetic
algorithms for nonlinear regression,” High Technology, vol. 946, p.
953, 1995.

[18] J. Nassour, P. Hénaff, F. Benouezdou, and G. Cheng, “Multi-layered
multi-pattern cpg for adaptive locomotion of humanoid robots,” Bio-
logical Cybernetics, vol. 108, no. 3, pp. 291–303, 2014.

[19] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A. McCrea,
“Modelling spinal circuitry involved in locomotor pattern generation:
insights from deletions during fictive locomotion.” The Journal of
Physiology, vol. 577, pp. 617–639, 2006.

[20] P. F. Rowat and A. I. Selverston, “Oscillatory mechanisms in pairs of
neurons connected with fast inhibitory synapses,” Journal of Compu-
tational Neuroscience, vol. 4, no. 2, pp. 103–127, 1997.

[21] P. Rowat and A. Selverston, “Learning algorithms for oscillatory
networks with gap junctions and membrane currents,” Network: Com-
putation in Neural Systems, vol. 2, no. 1, pp. 17–41, 1991.

[22] D. A. McCrea and I. A. Rybak, “Organization of mammalian locomo-
tor rhythm and pattern generation,” Brain research reviews, vol. 57,
no. 1, pp. 134–46, January 2008.

[23] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and
C. De Boor, A practical guide to splines. Springer-Verlag New York,
1978, vol. 27.

[24] P. Atoofi, F. H. Hamker, and J. Nassour, “Learning of central pattern
generator coordination in robot drawing,” Frontiers in Neurorobotics,
vol. 12, p. 44, 2018.

[25] V. Pătrăucean, P. Gurdjos, and R. G. Von Gioi, “A parameterless line
segment and elliptical arc detector with enhanced ellipse fitting,” in
Computer Vision–ECCV 2012. Springer, 2012, pp. 572–585.

[26] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: a
line segment detector,” Image Processing On Line, vol. 2, pp. 35–55,
2012.

892

