
Fast, Anytime Motion Planning for Prehensile Manipulation in Clutter

Andrew Kimmel, Rahul Shome, Zakary Littlefield, Kostas Bekris

Abstract— Many methods have been developed for planning
the motion of robotic arms for picking and placing, ranging
from local optimization to global search techniques, which are
effective for sparsely placed objects. Dense clutter, however,
still adversely affects the success rate, computation times, and
quality of solutions in many real-world setups. The current
work integrates tools from existing methodologies and proposes
a framework that achieves high success ratio in clutter with
anytime performance. The idea is to first explore the lower
dimensional end effector’s task space efficiently by ignoring
the arm, and build a discrete approximation of a navigation
function, which guides the end effector towards the set of
available grasps or object placements. This is performed online,
without prior knowledge of the scene. Then, an informed
sampling-based planner for the entire arm uses Jacobian-
based steering to reach promising end effector poses given
the task space guidance. While informed, the method is also
comprehensive and allows the exploration of alternative paths
over time if the task space guidance does not lead to a solution.
This paper evaluates the proposed method against alternatives
in picking or placing tasks among varying amounts of clutter for
a variety of robotic manipulators with different end-effectors.
The results suggest that the method reliably provides higher
quality solution paths quicker, with a higher success rate
relative to alternatives.

I. INTRODUCTION

A variety of robotic tasks, such as warehouse automation
and service robotics, motivate computationally efficient and
high-quality solutions to prehensile manipulation. Typical
applications involve the need to pick and place a variety
of objects from tabletop or shelf-like storage units. Such
manipulation challenges are demonstrated in Fig. 1.

Consider a tabletop and shelf manipulation challenge, as
shown in Fig. 2(top). Many existing methods are capable
of finding collision-free motions in such tabletop challenges
[1][2][3]. Prior work [4] has shown that large amounts of
clutter can significantly reduce the viable valid grasps on an
object. While traditional strategies successfully find solutions
in the tabletop setting, more cluttered environments like
the shelf results in a massive degradation of performance,
as highlighted in Fig. 2(bottom). One possible explanation
is that the clearance of the solutions found in cluttered
scenes is low, where clutter refers to the minimum distance
between the robot geometries and the rest of the environment.
This work accordingly refers to scenes with low clearance
as densely cluttered, which have narrow passages in the
workspace that make the motion planning problem harder.
Nevertheless, coming up with high-quality motion planning

The authors are with the Computer Science Dept. of Rutgers University,
110 Frelinghuysen Road, Piscataway, NJ, USA, {andrew.kimmel,
rahul.shome, zakary.littlefield,
kostas.bekris}@rutgers.edu.

Fig. 1. An example of manipulation in cluttered table and shelf environ-
ments, where the grasped object is partially occluded by other objects.

solutions to such challenges in a reasonable amount of time
remains an important objective.

In problems where solutions exist in workspace clutter,
there is a need to effectively guide the search process. The
key insight is that in manipulation tasks, goals are typi-
cally end-effector centric i.e., grasping configurations. Con-
sequently, heuristic guidance in manipulation tasks should
reason about the end-effector. Additionally, the planning
algorithm has to be designed to effectively use such guidance
to find high-quality solutions quickly.

Towards solving such a challenge, this work proposes
the Jacobian Informed Search Tree (JIST) method, which
is a heuristic-guided sampling-based search algorithm for
prehensile manipulation planning in the presence of dense
clutter. The key idea is to plan around the constraints induced
on the end-effector by the presence of clutter, so as to
guide the motions of the arm towards areas which lead to a
solution. The contributions of this work are: 1) developing an
effective heuristic for guiding the arm by solving the motion
planning problem for just the end effector; 2) applying the
pseudo-inverse Jacobian as a steering process which allows
the arm to be guided by the heuristic; and 3) incorporating
task space guided maneuvers effective in clutter into an
asymptotically optimal motion planner.

The performance of JIST is evaluated experimentally
through comparison with other state-of-the-art planners for
picking and placing tasks, including both trajectory optimiza-
tion (CHOMP-HMC) and sampling-based methods (Grasp-
RRT, IK-CBiRRT). The results indicate that JIST, in con-
trast to the alternatives, can quickly and reliably compute
high-quality solutions in the presence of dense clutter in
unknown scenes, for a variety of robotic platforms, without
requiring parameter tuning.

II. BACKGROUND AND RELATIVE CONTRIBUTION

The proposed method draws inspiration from both broad
categories of approaches for planning arm motion: a) local
optimization and b) global search.

Local optimization follows a locally valid gradient towards
finding a solution. Artificial potential fields incrementally
move the current robot configuration by following such a

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7282-2/18/$31.00 ©2018 IEEE 874

Fig. 2. (top) Two manipulation challenges in a table and shelf environment.
(bottom) Success rate (collision-free solution found within 30 seconds) of
manipulation motion planning methods averaged over 50 trials.

gradient towards the goal. For arm planning [5], workspace
virtual forces are mapped to torques through the manipu-
lator’s Jacobian. The framework allows for a hierarchy of
objectives that a redundant arm can potentially try to satisfy
[6]. The typical limitation is the presence of local minima,
which can be avoided through integration with a global
planner [7] or defining a navigation function [8]. The latter is
difficult to find for complex geometric problems [9]. JIST
uses gradient information to locally guide the exploration of
the arm’s path. This is performed in the context of a global
search process so as to achieve stronger guarantees.

Trajectory optimization methods define a gradient over the
entire trajectory, and are capable of finding smooth solutions
for high DOF systems in sparse setups [2][10][11]. Such
methods use precomputed signed distance fields for defining
obstacle avoidance gradients in the workspace. The accuracy
and cost of computing these fields depend upon resolution.
JIST similarly aims for high-quality solutions but avoids
dependency on parameters and better handles clutter.

Global heuristic search approaches aim to search the
configuration space of a robotic arm given a discretization,
frequently by focusing the search in the most promising
subset or projection of that space [12][13][14]. Heuristics
that have been used in the context of manipulation tasks
include reachability [15] or geometric task-based reasoning
[16]. JIST first solves the manipulation problem for a free-
flying end effector geometry, and then uses this as a heuristic
during the search in the arm’s configuration space.

Sampling-based planners [17][18] aim to scale better
in high dimensions, while providing guarantees, such as
asymptotic optimality [19][20]. They incrementally explore
the arm’s configuration space through sampling. A variety
of sampling-based planners has been developed for robotic
arms [21][22][23], some of which use the pseudo-inverse of
the Jacobian matrix for steering [3] which has been shown to
be a probabilistically complete projection onto the grasping
manifold [24]. The current method follows the sampling-
based framework to maintain desirable guarantees, while

properly guiding the search to quickly acquire high-quality
solutions in terms of end-effector’s displacement.

Some approaches deal with integrated grasp and motion
planning [25][26]. This work focuses on motion planning as-
pects and uses the output of grasping planners [27][28][29],
i.e., grasps to set the goals of the corresponding picking
challenges, which are frequently defined as end effector
poses relative to a target object.

III. PROBLEM SETUP

Consider a robot arm with d degrees of freedom, which
must solve pick and place tasks involving a target object o
in a workspace with a set of static obstacles O.

Assumption 1: The geometric models of object o and
obstacles O are known. Online, before calling the planner, a
perception module provides the 6D pose po ∈ SE(3) of o,
as well as the 6D poses of obstacles O. �

This setup can be easily extended to point cloud rep-
resentations, permitting the utilization of recent work on
6D pose estimation [30]. Note that this does not allow
precomputation that reasons over the object or obstacle
poses, as this information is available only online.

A. Goal Task Space Motion Planning

Definition 1 (C-space): An arm’s configuration q is a
point in the robot’s C-space: Cfull ⊂ Rd. The colliding C-
space (Cobs ⊂ Cfull) corresponds to configurations where
the arm collides with O or o in their detected poses. The
free C-space is then defined as: Cfree = Cfull \ Cobs. �

The motion planning problem to be solved in manipulation
setups is frequently not defined directly in Cfree. Instead, the
task relates to the arm’s end effector pose.

Definition 2 (Pose Space): The end effector’s pose space
E ⊆ SE(3) corresponds to the reachable subset of poses for
the arm’s end effector. �

The pose space E can be computed given the forward
kinematics of the robotic arm FK : Cfull → E. The inverse
kinematics function corresponds to the inverse mapping:
IK : E → Cfull. For redundant manipulators, dim(E) <
dim(C), so IK describes a mapping to self-motion mani-
folds of the manipulator [24], composed of states, which all
have the same end effector pose.

Definition 3 (Goal-Constrained Task Space (GCTS)):
Given a set of goal poses Egoal ⊂ E for the end effector,
the arm’s goal task space Qgoal ⊂ Cfull denotes the robot
configurations that bring the end effector to a pose in the
set Egoal: Qgoal = {∀ q ∈ Cfull | FK(q) ∈ Egoal}. �

For a redundant arm, even a discrete pose set Egoal gives
rise to a continuous submanifold of solutions Qgoal. Given
the above definition, the objective is to solve the following:

Definition 4 (Motion Planning with a GCTS): Given a
start arm configuration qstart ∈ Cfree and a set of goal
poses for the end effector Egoal ⊂ E, a solution path is a
continuous curve π : [0, 1] → Cfree, so that π(0) = qstart
and π(1) ∈ Qgoal. Given the space of all solution paths Π,
the objective is to find the path π∗ = argminπ∈Π C(π),
which minimizes a cost function C defined over Π. �

875

B. Defining Goal Poses for Pick and Place Instances
For picking, the goal is to move the end effector to a pose

that allows for a stable grasp.
Assumption 2: A grasping planner produces a set of sta-

ble, collision-free grasps for the arm’s end effector and the
target object o at the object’s detected pose po. �

A database of grasps can be computed in the object’s frame
[31][27][28][29] and evaluated in terms of their stability
offline [32]. Online, the grasps are transformed given the
object pose po and collision checked, given the end effector’s
geometry and the obstacles O. Nevertheless, states that
correspond to grasps are on the boundary of Cfree with Cobs,
which result in very hard motion planning problems. For this
reason, the goal set for picking instances is defined for “pre-
grasp” poses: each grasp returned by the grasping planner is
transformed by moving the end effector along a vector away
from the object as shown in Fig. 3. A solution returned by
the planner that brings the end effector to a “pre-grasp” pose,
needs to be appended with a motion so that the end effector
achieves the actual grasp.

Fig. 3. a) Pre-grasp pose, b) post-grasp state, c) object pre-placement.

A similar setup is used for placing, where in the initial
state the target object is immobilized by the end effector. In
this case, the arm-object system can be considered as the
robot and the end effector is the object itself.

Assumption 3: For placement, a task planner produces a
set of stable object placements on a support surface. �

Again, it is helpful to avoid defining problems that bring
the robot close to the boundary of Cfree. Thus, if the initial
state has the object on a resting surface, the state is trans-
formed so that the object is raised away from the surface.
For a goal object placement, the pose is transformed so that
the object is again raised away from the surface. Planning
solutions from “post-grasp” states to “pre-placement” goal
poses are again extended so that the robot moves the object
from the grasp state to the actual goal placement.

C. Distance and Cost Function
It has been established that the problem at hand is closely

tied to the motions of the end effector, since the goals and
heuristic can be described by it. The current work proceeds
to define a distance function appropriate for this setting, that
minimizes end effector displacement. Another benefit of this
is that paths that minimize end effector motion tend to look
more natural to human observers who pay more attention to
the end effector rather than the rest of the arm [33].

Towards this objective, this work employs the DISP dis-
tance function, which is a model-aware distance metric
for SE(3), which can be approximated efficiently by the
C− DIST algorithm [34]. Given the convex-hull H of the
end-effector’s model, the DISP distance D of two poses
ei, ej ∈ SE(3) is:

D(ei, ej) = maxp∈H ||p(ei)− p(ej)||2 (1)

With slight abuse of notation, the expression D(q, e)
between q ∈ Cfull and end effector pose e ∈ E will
denote the distance D(FK(q), e). It follows that the distance
between qi, qj ∈ Cfull is D(FK(qi), FK(qj)) Then, the
cost of a path π is:

C(π) =

k∑
i=0

D(π(i), π(i+ 1)) (2)

where k is a discretization along π. For the remainder of
the paper, unless otherwise stated, distances will refer to Eq.
1, and costs will refer to Eq. 2.

IV. JACOBIAN INFORMED SEARCH TREE

This section describes a process for exploring the end
effector’s space E and how the corresponding information
is used to guide the exploration of the arm’s space Cfull .

A. Exploring the End Effector’s Pose Space

A simple way to estimate how far the end effector is at
pose e ∈ E from the set Egoal is to consider the minimum
SE(3) distance from e to all goal poses Egoal. Nevertheless,
in the presence of clutter, these distances are not informative
of the end effector’s path cost so as to reach goal poses.

To take clutter into account, this work proposes the offline
construction and online search of a roadmap Ree(Vee, Eee)
in E as shown in Fig. 4. The vertices Vee store reachable end
effector poses given the arm’s kinematics, while the edges
store local connection paths for the free-flying end effector.
The goal poses Egoal and the start pose estart = FK(qstart)
are attached to Ree, which is then searched online for a path
from Egoal to estart. Performing the search in this direction
produces a multi-start search tree rooted at Egoal. During the
online search, only collisions between the end effector, the
obstacles O, and the object o, but not the arm, are taken into
account. This allows for quick estimations of the costs to
reach Egoal. These costs are used later as heuristics to guide
a search procedure in the arm’s C-space.

Fig. 4. (left) Construction of Ree. (right) Online search of Ree.

Offline Construction of Ree: The end effector reacha-
bility roadmap Ree(Vee, Eee) is constructed offline without
knowledge of the workspace and reflects the robot’s reacha-
bility. A sampling-based process is followed similar to PRM∗

[19]. A random arm state qr ∈ Cfull is sampled and the
corresponding end effector pose FK(qr) ∈ E is stored as
a vertex. Each vertex is then connected with an edge to
the closest log|Vee| vertices in terms of D(qr, e). Each edge
stores an interpolation in SE(3) between the two vertex poses
according to a discretization defined by an estimation of the
end effector’s maximum velocity.

Online Computation of Distances to Goal Poses: Given
knowledge of the workspace, Ree is searched for collision-
free end effector paths from the goal poses Egoal to the start

876

pose estart. The poses Egoal and estart are added as vertices
on Ree and are connected to their closest log|Vee| neighbors.

Then, a multi-start, multi-objective A* (MSMO A*) search
procedure is performed on Ree. Upon initialization, the
priority queue of the search includes all goal poses Egoal.
Then, each search node corresponds to a path from a pose
in Egoal to a vertex u ∈ Vee. The priority queue sorts nodes
so as to minimize the following two ordered objectives:
• f1(u), the number of colliding poses along the path from
Egoal to u, given the roadmap’s edge discretization;
• f2(u) = g2(u)+h2(u), where g2 is C(π(Egoal, eu)) and
h2 is D(eu, estart).

Once a vertex u has been expanded, it is added to the “closed
list” Lclosed. If there is a collision-free end effector path from
Egoal to estart, the above search will report the shortest path.
Then, the g2 cost of vertices u in Lclosed corresponds to an
estimate of the distance along the shortest collision free path
from u to Egoal, i.e., g2 is a discrete approximation of a
navigation function in E given the presence of obstacles. The
proposed approach uses these g2 values to heuristically guide
the exploration in Cfull. In dense clutter, if the roadmap’s
resolution does not permit collision-free paths, the algorithm
returns the path with the minimum number of collisions
given its discretization. In this case, the g2 values of vertices
in Lclosed will guide the arm exploration along the shortest,
least colliding solutions for the end effector.

B. Generating Arm Paths

This section describes how to generate paths for the arm
given the vertices u ∈ Vee stored in the “closed list” Lclosed
and the cost estimates g2 from u to Egoal. An illustration of
the steps of the algorithm can be seen in Figure 5.

The algorithm is outlined in Alg. 1, which is inspired by a
search strategy [20] capable of utilizing heuristic guidance.
It receives as input the start arm configuration qstart, the
goal poses Egoal, the end effector reachability roadmap
Ree, the number of iterations N , and the parameter of
the maximum number κ of greedy edge expansions per
iteration. The first step of the method is to execute the
multi-start, multi-objective A∗ search over Ree outlined in
the previous section, in order to acquire the closed list
Lclosed. This contains the vertices of Ree visited during the
search and the corresponding cost estimates to the goal poses
Egoal. The method then builds a search tree whose nodes
correspond to arm configurations. The tree is rooted at the
start configuration qstart (line 3) and is expanded towards
configurations that bring the end effector to goal poses.

Each iteration of the algorithm starts by selecting a node
of the search tree so as to expand it (lines 6-9). If a node was
added during the previous iteration, and its heuristic value
is better than its parent on the tree, then the newly added
node is selected for expansion (line 6-7). The heuristic value
h(q,Lclosed) of a configuration q corresponds to an estimate
of the cost to reach Egoal approximated using Lclosed.

If there was no progress made in the previous iteration
towards reaching Egoal, the SearchSelection subroutine
(line 9) instead uses a probabilistic selection process, where

Algorithm 1: JIST (qstart,Egoal, Ree, N, κ)

1 Lclosed ← MSMO A∗(Ree, qstart,Egoal);
2 π∗ ← ∅;
3 T← {qstart}; qnew ← qstart;
4 Acand(qnew)← NULL;
5 for N iterations do
6 if qnew 6= ∅ and h(qnew,Lclosed) <

h(parent(qnew),Lclosed) then
7 qsel ← qnew;

8 else
9 qsel ← SearchSelection();

10 if Acand(qsel) = NULL then
11 Acand(qsel)← GreedyEdges(qsel,Lclosed, κ);

12 else if Acand(qsel) = ∅ then
13 Acand(qsel)← FallbackEdges(qsel);

14 abest ← argmin
a∈Acand

h(a,Lclosed);

15 Acand(qsel)← Acand(qsel) \ abest;
16 qnew ← Steer(qsel, abest);
17 if BaB(qnew, π

∗) or CC(qsel → qnew) then
18 qnew ← ∅;
19 if qnew 6= ∅ then
20 π∗ ← AddEdge(T, qsel → qnew);
21 Acand(qnew)← NULL;

22 return π∗;

the probability of selecting a node depends on the node’s
corresponding sum of cost from the root and heuristic cost-
to-go. All nodes are guaranteed to have a non-zero probabil-
ity of being selected; however, nodes with better costs and
heuristic sum have a greater probability.

Once a configuration qsel is selected for expansion, the set
Acand represents a set of actions that can be used to extend
the tree out of qsel, which can correspond either to target
poses for the end effector or joint velocities for the arm. The
first time that node qsel is selected for expansion (line 10),
the subroutine GreedyEdges is used to generate target poses
for extending the tree out of qsel (line 11).
JIST iterates over the generated actions, which are pri-

oritized in terms of the lowest h in terms of the resulting
pose and the best one abest is considered for addition at
each iteration (line 14). Steer uses an appropriate steering
method to generate a trajectory where the state reached at the
end corresponds to qnew (line 16). The configuration qnew
must satisfy two conditions so as to be added as a new node
(line 17): (a) A branch and bound process (BaB) ensures
that qnew has smaller path cost relative to the length of the
best solution found π∗; (b) A collision checker CC verifies
whether the path from qsel to qnew is in collision. If the
node qnew passes these checks (line 19), then it is added to
the tree T. If a better path to the goal is discovered with the
addition of qnew, it is recorded as π∗ (line 20).

Greedy Edge Generation: These greedy edges are guided
by the information stored in the Lclosed, which contains end

877

Fig. 5. An illustration of the JIST framework for solving manipulation queries: (left) the closed list Lclosed is constructed using a multi-start, multi-
objective A* on Ree starting from Egoal to FK(qstart); (middle) JIST expands arm paths from the start configuration qstart guided by the cost-to-go
stored in Lclosed; (right) the best path found π∗ is kept track of as the solution trajectory, with subsequent solutions from JIST improving upon it.

effector poses explored during the online search of Ree. First,
the nearest end effector pose enear ∈ Lclosed is found relative
to FK(qsel). The method obtains poses to steer towards by
examining the adjacent vertices of enear on Ree, that belong
to Lclosed and also have a better heuristic estimate than qsel.

The number of target poses added is controlled by pa-
rameter κ. Experimental indications show that a value κ =
2∗ log|Vee| works well in practice. The method then updates
enear to its predecessor from the closed set, and attempts to
add target poses until either κ poses have been discovered, or
there are no other predecessors available. In the latter case,
the remaining target poses are sampled directly from the set
Egoal. Overall, this is a greedy procedure, which traces along
the search tree produced by the A*, while examining nearby
poses, which have also been expanded during the A* search.

Fallback Edge Generation: Every time a node is selected
and all greedy edges out of it have already been considered,
the method reverts to considering two fallback strategies for
generating edges. The first strategy corresponds to a random
control in terms of joint velocities executed for a random
duration. The second strategy randomly selects a goal state
qgoal ∈ Qgoal already discovered by the algorithm as a target
to steer towards.

Steering: For the fallback edges, the steering subroutine
either uses C-space interpolation to goal arm states, or
executes the random controls.

The greedy edges consist of target end effector poses.
The approach uses a steering method based on the pseudo-
inverse of the manipulator Jacobian matrix to achieve the
target poses. Given an arm configuration q = (q1, ..., qd)

T

and the corresponding end effector pose e = FK(q), the
Jacobian matrix is J(q) = ∂e

∂q .
For a target end effector pose etarget, let ∆e = etarget−e

denote the desired change in position of the end effec-
tor. The objective of the Jacobian-based steering process
J+steering is to compute the joint controls which solve
∆e = J∆q. The method uses the pseudo-inverse of the
Jacobian, J+, so as to minimize ||J∆q − ∆e||2, where
∆q = J+∆e. To account for singularities, damping [35]
and clamping are also employed. Thus, at time t, for the
configuration qt and the corresponding end effector pose et,
the control update rule for J+steering is:

∆qt = J+(qt) · (etarget − et) (3)
Since the objective is to minimize DISP, the gradient

followed by the above rule reduces the distance of the end
effector from the the target pose. Any configuration qgoal ∈
Qgoal discovered through J+steering is kept track of. A
benefit to using J+steering is that it satisfies the necessary
properties of the projection operator [24] needed to ensure
coverage of Qgoal. J+steering is used in the connection
of “pre-grasps”, “post-grasps”, and “pre-placemements” as
described in Section III.

V. EXPERIMENTS

JIST is compared against other planners for solving ma-
nipulation challenges. Recent work [26] has utilized CBiRRT
[1] for solving grasping problems. Accordingly, this work
compares against an IK-based variant of CBiRRT, which
uses IK on the Egoal to construct roots of the goal tree.
Grasp-RRT corresponds to an RRT variant, which utilizes
J+steering to discover grasp states during the goal biasing
phase [3]. CHOMP-HMC corresponds to an OpenRave [36]
prob. complete implementation of CHOMP[2].

Setup: A common planning software was used for the
sampling-based planners [37]. All methods were evaluated
on a single Intel Xeon E5-4650 processor with 8 GB of
RAM. Experiments were conducted on a variety of robotic
manipulators: Kuka LBR iiwaa (7 DOF), Rethink Baxter (14
DOF), and Motoman SDA10F (16 DOF). Three types of
end effectors were evaluated: the ReFlex hand, a parallel-
jaw, and a vacuum suction-cup. Each benchmark involved
computing a trajectory for one of the arms to a set of goal end
effector poses. For pick benchmarks, the poses correspond
to pre-grasps 2 cm away from the actual grasps. For place
benchmarks, the goal poses corresponded to pre-placements
for the object 5 cm above the resting surface.

Metrics: The number of planning successes and solution
quality were measured over time, and an average over 50 runs
was reported at each time interval. A success was counted if
the planner computed a collision-free trajectory from the start
state to the goal end-effector pose within the corresponding
time. Solution quality was measured using DISP .

Initialization: Both JIST and CHOMP required some
additional initialization prior to attempting to solve any of the
benchmarks. JIST required Ree to be first computed offline
(without knowledge of the scene). For the experiments,
the size of Ree was 25, 000 vertices, and the maximum
number of maneuvers κ was set to 20. For CHOMP each

878

Fig. 6. Success Rates, Solution Costs, and Example Picks for the Kuka+ReFlex (0), Baxter+Parallel (1), Motoman+ReFlex (2), Motoman+Vacuum (3,4)

environment had a signed-distance field constructed for it,
and also had its parameters tuned per benchmark, since no
single set of parameters sufficed for all. For CHOMP and IK-
CBiRRT, reachable, and collision-free arm configurations
were computed through IK at goal poses.

Pick Benchmarks: The results for success rate and solu-
tion cost over time are shown in Figure 6. Across all exper-
iments, JIST converged to a 100% success rate within the
time limit of 30 seconds, with an average initial solution time
breakdown shown in Figure 7 (left), while also providing the
lowest cost solutions in all cases. The end effector heuristic
was shown to be effective in guiding the search to produce
high quality initial solutions. An interesting side-note here
regarding CHOMP is that when initialized with solution states
found by JIST and with some additional parameter tuning,
the performance of CHOMP improved significantly. This
indicates that solutions out of JIST can serve as better
initializations for trajectory optimization methods.

Fig. 7. Breakdown in time for the initial solution using JIST for pick
(left) and place (right) benchmarks.

Place Benchmarks: The results for the place bench-
marks are shown in Figure 8, with average solution times
shown in Figure 7. On average, JIST spent longer in the
tree expansion portion of the method, relative to the pick
benchmarks due to the attached target object causing more
collisions. Despite this initial slowdown, JIST still managed
to converge to a 100% success rate before all other methods,
while also still providing the lowest cost solutions.

Fig. 8. Success Rates, Solution Costs, and Example Placements for the
Vacuum Place Benchmarks in the Table (0) and the Shelf (1) environments.

Remarks: The average clearance (i.e. shortest distance
between the robot and the obstacles) of solutions found by
all methods in the table environment was 5.7 cm, whereas in
the shelf environment it was 2.2 cm. Accordingly, the table
benchmarks were the easiest for all methods to solve. This is
primarily due to the fact that overhand grasps over the table
were viable solutions. However, in the shelf benchmarks,
JIST maintains its high performance despite the clutter
severely reducing the overall clearance and viable grasps.

879

VI. DISCUSSION

This paper presented the Jacobian Informed Search Tree
(JIST) algorithm, which is an asymptotically optimal, in-
formed sampling-based planner for controlling an arm in
densely cluttered scenes so as to achieve desired end ef-
fector configurations. The method optimizes a cost function
representing the displacement of the end-effector, and uses a
heuristic computed by effectively searching the end effector’s
task space. JIST employs Jacobian-based steering to bias
the expansion of the tree towards end effector poses that
appear promising given the heuristic guidance. The method
was shown to have high success rate, even in densely
cluttered scenes, with fast initial solution times and high
quality solutions.

There are several directions for further exploration. For
instance, goal constraints can be introduced for different arm
links, such as a camera attached to the arm. One of the
benefits of using Jacobian-based steering is that it allows for
the satisfaction of secondary objectives in the null-space of
the primary objective to reach the target pose. In this way,
JIST could also incorporate additional constraints during
task execution, such as maintaining certain orientations of
the grasped object or confining the end-effector to a partic-
ular workspace region. Recent work in more complex IK-
solvers could also be utilized to more efficiently guide the
search tree [38]. Another direction is the consideration of
alternative cost functions, especially time-based and multi-
objective functions. Finally, it is interesting to evaluate the
performance of JIST without knowledge of the obstacle
geometries by operating directly over point clouds [39].

REFERENCES

[1] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” in ICRA, 2009.

[2] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, A. Bagnell, and S. Srinivasa, “CHOMP: Covariant Hamil-
tonian optimization for motion planning,” IJRR, vol. 32, no. 9, 2013.

[3] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous grasp and
planning: Humanoid robot ARMAR-III,” RAM, vol. 19, no. 2, 2012.

[4] V. Azizi, A. Kimmel, K. Bekris, and M. Kapadia, “Geometric reacha-
bility analysis for grasp planning in cluttered scenes for varying end-
effectors,” CASE, 2017.

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” IJRR, vol. 5, no. 1, 1986.

[6] P. Song and V. Kumar, “A potential field based approach to multi-robot
manipulation,” in ICRA, vol. 2, 2002.

[7] C. W. Warren, “Global path planning using artificial potential fields,”
in ICRA, 1989.

[8] E. Rimon and D. E. Koditschek, “Exact robot navigation using cost
functions: the case of distinct spherical boundaries in E/sup n,” in
ICRA, 1988.

[9] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in ICRA, 1991.

[10] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization.” in RSS, 2013.

[11] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion Planning as
Probabilistic Inference using Gaussian Processes and Factor Graphs.”
in RSS, 2016.

[12] B. Cohen, S. Chitta, and M. Likhachev, “Single-and dual-arm motion
planning with heuristic search,” IJRR, vol. 33, no. 2, 2014.

[13] K. Gochev, V. Narayanan, B. Cohen, A. Safonova, and M. Likhachev,
“Motion planning for robotic manipulators with independent wrist
joints,” in ICRA, 2014.

[14] B. Cohen, M. Phillips, and M. Likhachev, “Planning Single-arm
Manipulations with n-Arm Robots,” in RSS, 2014.

[15] K. Hang, J. A. Haustein, M. Li, A. Billard, C. Smith, and D. Kragic,
“On the evolution of fingertip grasping manifolds,” in ICRA, 2016.

[16] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Algorithmic
Foundations of Robotics XI. Springer, 2015.

[17] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,
“Probabilistic Roadmaps for Path Planning in High-dimensional Con-
figuration Spaces,” in IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, 1996.

[18] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000.

[19] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, vol. 30, no. 7, 2011.

[20] Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 10/2018 2018.

[21] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” IJRR, vol. 23, no. 7-8, 2004.

[22] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” TRO, vol. 26, no. 3, 2010.

[23] T. McMahon, S. Thomas, and N. M. Amato, “Sampling based motion
planning with reachable volumes: Application to manipulators and
closed chain systems,” in IROS, 2014.

[24] D. Berenson and S. S. Srinivasaz, “Probabilistically complete planning
with end-effector pose constraints,” in ICRA, 2010.

[25] J. Fontanals, B.-A. Dang-Vu, O. Porges, J. Rosell, and M. A. Roa,
“Integrated grasp and motion planning using independent contact
regions,” in Humanoids, 2014.

[26] J. A. Haustein, K. Hang, and D. Kragic, “Integrating motion and
hierarchical fingertip grasp planning,” in ICRA, 2017.

[27] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in ICRA, 2009.

[28] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered envi-
ronments for dexterous hands,” in Humanoids, 2008.

[29] Z. Xue and R. Dillmann, “Efficient grasp planning with reachability
analysis,” IJHR, vol. 8, no. 04, 2011.

[30] C. Mitash, A. Boularias, and K. E. Bekris, “Improving 6D Pose
Estimation of Objects in Clutter via Physics-aware Monte Carlo Tree
Search,” in ICRA, 2018.

[31] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in ICRA, vol. 2, 2003.

[32] S. Liu and S. Carpin, “A fast algorithm for grasp quality evaluation
using the object wrench space,” in CASE, 2015.

[33] M. Zhao, R. Shome, I. Yochelson, K. Bekris, and E. Kowler, “An
experimental study for identifying features of legible manipulator
paths,” in Experimental Robotics, 2016.

[34] L. Zhang, Y. J. Kim, and D. Manocha, “C-DIST: efficient distance
computation for rigid and articulated models in configuration space,”
in ACM SPM, 2007.

[35] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse
kinematics,” Journal of Graphics tools, vol. 10, no. 3, 2005.

[36] R. Diankov, “”Automated Construction of Robotic Manipulation Pro-
grams”,” Ph.D. dissertation, Carnegie Mellon University, 2010.

[37] Z. Littlefield, A. Krontiris, A. Kimmel, A. Dobson, R. Shome, and
K. E. Bekris, “An extensible software architecture for composing
motion and task planners,” in SIMPAR. Springer, 2014.

[38] D. Rakita, B. Mutlu, and M. Gleicher, “RelaxedIK: Real-time Synthe-
sis of Accurate and Feasible Robot Arm Motion,” in Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[39] A. Kuntz, C. Bowen, and R. Alterovitz, “Fast Anytime Motion
Planning in Point Clouds by Interleaving Sampling and Interior Point
Optimization,” in ISRR, 2017.

880

