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Abstract— This paper presents a feedback control method-
ology for 3D dynamic underactuated bipedal walking, that
couples an actuated spring-loaded-inverted-pendulum (aSLIP)
for forward walking and the passive Linear Inverted Pendulum
(LIP) for lateral balancing. The applications of the reduced
order models are twofold. First, we utilize aSLIP optimization to
design optimal leg length and angle trajectories, and use the LIP
dynamics to find desired boundary condition for lateral roll.
Second, we present two feedback stabilization laws which are
based on the reduced order models and applied on the full robot
to stabilize the sagittal walking and lateral balancing separately.
The ultimate feedback controller on the full order 3D walking
robot is implemented via control Lyapunov function based
Quadratic Programs (CLF-QPs). In particular, the reduced
order models are used to approximate the underactuated dy-
namics and plan desired trajectories that are tracked via CLF-
QPs. The end result is 3D underactuated walking, demonstrated
in simulation on the bipedal robot Cassie.

I. INTRODUCTION

3D dynamic robotic walking remains an unsolved problem
in locomotion research community. On the feedback control
side, the difficulties come from the complex nonlinear dy-
namics, high dimensionality and the intrinsic hybrid nature
of the behavior itself. Approximation of the dynamics and
control by simple reduced order models has been one of
the popular approaches. Canonical simple models, such as
the Linear Inverted Pendulum (LIP) [1], [2] and its variants,
utilize the integrable nature of the linear dynamics for online
motion planning. The planned trajectory is then enforced
through the robot’s center of mass (CoM). Such implemen-
tation requires foot-actuated robots moving with relatively
small velocities, so that the zero-moment-point [1] constraint
remains valid, i.e. that the LIP approximation is valid.

Another simple model, the spring-loaded-inverted-
pendulum (SLIP) model [3], [4], [5], [6], also has been
investigated for controlling legged hopping [7], running
[8] and walking [9]. Since the dynamics of the energy
conserving SLIP offers templates for locomotion behaviors,
[6], [10] embedded the SLIP dynamics on the CoM of
planar robots. Due to the energy loss of ground impact and
model difference, energy stabilization [7], [6] and stepping
stabilization methods [9], [4] have been applied to stabilize
the system dynamics. Consequently, adding actuation on the
SLIP model [7], [9] becomes necessary.

Actuation of the SLIP model is normally done by varying
leg length [9] or applying force actuation in the leg [7].
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Fig. 1. The actuated SLIP model in the sagittal plane (left) and the LIP
model in the lateral plane (right).

Faithful connection between the actuated SLIP model and
the full order robot oftentimes is missing. We posit that the
connection becomes important when the reduced order mod-
els are applied on underactuated robots [10], [11]. Our recent
work on bipedal hopping [12] has indicated this as well.
The underactuation of the compliance can be approximated
by that of the spring in the SLIP subject to the actuated
part of the robot, i.e. the leg length. To better understand of
the approximation of complex robots via simple models, this
paper presents a methodology for 3D underactuated walking
control using simple planar models.

The reduced order models are an actuated SLIP (aSLIP)
and an underactuated LIP. The aSLIP is an application of
our discovery of the nonlinear leg spring approximation [12]
for the compliant robot Cassie. The approximation relies on
the fact that the spring dynamics dominates the dynamics
contribution of the leg to the upper part of the robot.
Continuing from the success of the hopping, we present the
periodic walking behavior of the leg spring approximation in
the form an aSLIP walking in the sagittal plane. The lateral
balancing becomes a nontrivial problem for underactuated
feet and, as such, we present a feedback stepping method
based on the LIP approximation of the lateral dynamics.
This is partially inspired by [11], in which the LIP dynamics
is used for controlling a single domain walking of a point
footed robot. The difference lies in our consideration of two
domain walking and compliant foot ground contact.

The planar models provide the feedback-planned trajecto-
ries for the underactuated walking. The control Lyapunov
function based Quadratic program (CLF-QP) [13] is uti-
lized for trajectory tracking. The final result is a feedback
controller that achieves 3D underactuated walking, as is
demonstrated in simulation on a full-order model of Cassie.
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II. ROBOT MODEL

In this section, we describe the robot model and leg spring
model based on the physical robot Cassie [14], [12]. The
main characteristics of this robot is the compliant springs
in the leg, which facilities a strong correlation between the
SLIP model and the physical robot [15], [12]. It is important
to note that: despite the fact that our model is specific to
this robot, the feedback planning and control is general for
robots with leg compliance and foot underactuation. This
comes from the application of reduced order models, which
will be explained in later sections.

A. Kinematics and Dynamics Model

The robot Cassie is designed with five motor joints, two
compliance leaf springs and two closed kinematic chains
in each leg. Fig. 2 shows the links and joints on one leg.
The toe (foot) of the leg is very narrow, thus we model
it as a line segment, which introduces foot rolling during
ground contact. The leaf springs are modeled as torsional
springs, the stiffness and damping of which are provided by
the robot manufacturer [14]. The closed kinematic chains
are connected by lightweight aluminum rods. To simplify
the closed chain dynamics, we replace the achilles rods
by holonomic constraints between the connectors [12] and
remove the plantar rods by placing the toe actuation at the
toe pitch joints directly. The resultant leg model has 2 spring
joints, 1 passive tarsus joint and the 5 motor joints. Using the
floating base model, we present the Euler-Lagrange equation
with holonomic constraints:

M(q)q̈ +H(q, q̇) = Bu+ JTs τs + JTh,vFh,v, (1)

Jh,v(q)q̈ + J̇h,v(q)q̇ = 0, (2)

where q ∈ SE(3) × Rn=16, M(q) is the mass matrix,
H(q, q̇) is the Coriolis, centrifugal and gravitational term,
B and u ∈ R10 are the actuation matrix and the motor
torque vector, τs and Js are the spring joint torque vector
and the corresponding Jacobian, and Fh,v ∈ Rnh,v and
Jh,v are the holonomic force vector and the corresponding
Jacobian respectively. We use subscript v to indicate different
domains. For example, when robot has two feet contacting
the ground, i.e. in Double Support Phase (DSP), nh,v=DSP =
12 (2 holonomic constraints by achilles rods and 5 by each
foot contact).

B. Leg Spring

Since the robot is designed with lightweight legs and com-
pliant springs in the leg, we use the leg spring to approximate
the leg compliance. Our previous work that achieved hopping
on Cassie [12] indicates that the compliance of the shin and
tarsus springs can be approximated by a nonlinear prismatic
spring along the leg direction, i.e. leg spring. The stiffness
of the leg spring is similar to the end-effector stiffness of
parallel robotic manipulators; the closed kinematic chain in
the robot leg makes it to resemble a parallel robotic manip-
ulator. We refer the readers to [12] for detailed derivations
of the leg spring for the robot. This results in polynomial
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Fig. 2. The leg joints (a) and the leg model (b) of the robot Cassie. The
real leg length r is the distance between the hip pitch joint to the tow pitch
joint. The leg length L is the real leg length when the spring deflections
are zero.

regressions to approximate the stiffness and damping of the
leg spring as functions of the leg length L. Consequently,
the stiffness K of the leg spring is calculated as,

K(L) = β0 + β1L+ β2L
2 + β4L

4, (3)

where βi are the coefficients from the polynomial regression.
The damping D(L) of the leg spring is approximated in the
same way. The leg spring force is written as,

F = K(L)s+D(L)ṡ. (4)

where s, ṡ are the spring deformation and deformation rate.
By the definition of leg length L (see Fig. 2), s = L − r,
which is a holonomic constraint. The leg spring has shown
to capture the axial dynamics of the system [12]. Inspired
by this, we present the planar actuated Spring-Loaded-
Inverted-Pendulum (aSLIP), which will be used for trajectory
generation and feedback control for the full robot.

III. THE ASLIP MODEL FOR FORWARD WALKING

The canonical SLIP model consists a point mass attaching
on mass-less linear springs with certain normal leg length
and spring stiffness [3], [5]. In biomechanics community,
this simple model has been used to understand the dynamics
of human walking [3]. In robotic locomotion, it has also
inspired robot designs [15], [8] and control methodologies
[6], [8], [10] based on the dynamics behavior of the SLIP.

Our aSLIP model uses the leg spring to replace the linear
spring and use the pelvis as the point mass. The leg spring
dynamics is affected by the leg length actuation, so is the
point mass. As a result, our aSLIP model differs from the
canonical SLIP models in the following ways. First, our leg
spring is a nonlinear spring. Second, damping of the spring
is not neglected so that active control is necessary for energy
compensation. Third, the actuation is included by changing
of the leg length.

In this section, we first present the dynamics of the aSLIP.
Then the trajectory generation method via direct collocation
is described to generate optimal trajectories for walking.
Lastly, we present a feedback control law to stabilize op-
timized trajectories on the aSLIP model to enable walking.

68



A. Dynamics of the aSLIP Walking

The aSLIP model of locomotion is a dynamic hybrid
phenomenon, the domains of which differentiate by the
number of contacts. The walking can be generally described
as a periodic alternation of Single Support Phase (SSP) and
Double Support Phase (DSP). In both domains, the point
mass dynamics can be compactly written as,

mr̈ =
∑

F +mg (5)

where r = [x, z]T is the position of the point mass, F
are the leg spring forces, and g is gravitational vector. For
our aSLIP model, the spring forces couple with the leg
internal holonomic constraints and leg length actuation. It is
preferable to write the system dynamics in polar coordinates.
For instance, the dynamics in SSP is,

r̈ = F
m − gcos(β) + rβ̇2

β̈ = 1
r (−2β̇ṙ + gsin(β))

s̈ = L̈− r̈

where β is the leg angle, s is the leg spring deformation,
L is the leg length, and r is the distance between the point
mass and the point of contact, i.e. the real leg length. F
is calculated by (4). We view L̈ as the virtual input to this
system. Fig. 3 (a) shows the aSLIP model with all the leg
parameters in SSP.

B. Trajectory Optimization via Direct Collocation

Since the system energy dissipates through spring damp-
ing, certain ways of energy injection are needed for enabling
periodic walking. Energy stabilization methods have been
developed in [6], [7] to enforce the system dynamics evolu-
tion to be that of an energy conserving SLIP model. Then
forward simulation of the energy conserving SLIP model is
required to find stable periodic orbits. [9] applied a fixed
parameterization of leg length actuation to inject energy
explicitly. These methods may lead to over constraining of
the system and require parameter finding, and there is a lack
of optimality. Here we apply a trajectory optimization via
direct collocation method [16] to find optimal periodic solu-
tion for the aSLIP walking. The energy injection is encoded
implicitly through the optimized leg length actuation.

Our discretization and integration methods are the same as
[17], [12]; an even nodal spacing is used for discretizing the
trajectory in time for each domain, and the defect constraints
is described algebraically by implicit trapezoidal method. As
we are interested in periodic walking, continuity of states
between domains are enforced. It is desirable to minimize
the virtually consumed energy by defining the cost as 1,

Jwalking =
∑∫ Ti

0

(L̈i1(t)2 + L̈i2(t)2)dt. (6)

Additional constraints include the step length, leg length and
spring deformation limits, nonnegative spring forces, domain
duration and etc.

1Ti is the duration of each domain. The integration is implemented as
summations of trapezoidal integrations for all the domains.
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Fig. 3. The aSLIP walking (a) and the optimization results, i.e. (b) the leg
length trajectories, (c) spring force profile, (d) energy profile, (e) vertical
mass position and (f) the swing foot trajectory.

VLO. We also constrain the states at the time of Vertical
Leg Orientation (VLO) [5] with an eye towards the feedback
control, which will be explained later. The VLO is the
configuration that the stance leg angle is 0 during SSP (Fig.
3(a)), the constraint of which is,

L̇VLO = 0 (7)

In implementation, we divide the SSP domain into one
before VLO, SSPpre, and one after the VLO, SSPpost, so
that the VLO states can be directly constrained. Additional
constraints also include L ≥ LVLO in SSPpost so that energy
injection mainly happens in this domain.

Swing Leg Trajectory in SSP. The swing leg trajectory
is oftentimes neglected in SLIP walking since it doesn’t
have dynamics. The swing leg trajectories on the full robot
then need to be constructed from the boundary conditions.
Here, we construct the swing leg state trajectories from the
optimization so that continuity of leg length trajectories L(t)
and leg angle trajectories β(t) can be directly enforced.
The leg spring deformation on the swing leg is assumed to
converge to 0 quickly, e.g. s̈2 = −K(L)s2 − D(L)ṡ2 can
serve this need. The kinematic constraint L2 = s2 + r2 is
also enforced. Desired swing foot height is constructed by
a half sinusoidal curve. Note that both the swing leg angle
and length trajectories are useful for the full robot. For con-
trolling the aSLIP model, the swing leg angle trajectory can
be used or ignored, depending on the switching conditions.

Fig. 3 shows one optimization result for a walking gait
with TSSP = 0.5s, TDSP = 0.15s. Note that the optimization
for periodic walking is performed only once.

C. Feedback Control on aSLIP

Stabilization of the optimized trajectories is commonly
done by feedback control on the output dynamics [16],
[18]. For underactuated walking, periodic stability is then
checked through Poincaré maps [19]. Typically, only stable
trajectories are used [16], [18]. Due to the hybrid nature of
walking, additional stabilization schemes focus on utilizing
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the discrete transition, including adjusting touch down angle
[8] and step length [18].

For our aSLIP model, we tried the abovementioned stabi-
lization methods, using feedback control to track the desired
output trajectories [L(t); L̇(t)]2with touch down angle or step
length modulations. The resultant stability of the closed loop
system still depends on the trajectory optimization results. In
other words, not all reasonable optimized trajectories can be
stabilized. Inspired by [5] of developing Poincaré section at
the VLO configuration, we discover the following feedback
modulation on the leg length trajectory based on the VLO
velocity:

Ld = LVLO + Γ∆L (8)
L̇d = ΓL̇ (9)

with,

∆L = L− LVLO (10)
Γ = 1−Kp(vvho − vdes

vho) (11)

where vdes
vho, vvho are the desired and actual forward velocities

at the VLO, and Kp is the proportional gain. This is possible
since we constraint L̇VLO = 0.

Fig. 4 shows the comparison between our VLO controller
(L controller) and the traditional controller with step length
modulation (stepping). The stepping controller failed for
this optimized gait: the velocity and system energy start
to diverge after couple steps. Our L controller can still
stabilize the gait based on the VLO velocity feedback. The
converged trajectories are significantly close to the ones
from the trajectory optimization. Based on our numerical
exploration on different optimized walking gaits, the VLO
controller (with Kp = 10) can stabilize all reasonable
optimized trajectories with switching from SSP to DSP based
on foot height.

It is important to note that this stabilization law is a
feedback planning on the leg length trajectory. The impor-
tance comes from not sticking with following fixed desired
trajectories. The feedback planning becomes necessary for
shifting from the aSLIP to the full robot. On the walking
of the full robot, there are foot impacts causing energy loss.
There are also model differences between the aSLIP and
the full robot. The CoM of the pelvis is not located at the
hip pitch, for which can cause system energy to change
according to [9], when controlled as a fixed orientation. In
other words, the problem of the discrepancy between the
models is solved by the feedback planning and control.

IV. LINEAR INVERTED PENDULUM MODEL FOR
LATERAL BALANCING

Our aSLIP model provides a trajectory generation and
feedback control method for the sagittal plane walking. Since
the vertical mass oscillation is small (Fig. 3 (e)), we posit that
the canonical Linear Inverted Pendulum (LIP) dynamics can

2The leg length dynamics is decoupled from the rest of the system. A
linear controller is applied on L̈ to track the desired output trajectories
[L(t); L̇(t)]
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Fig. 4. Comparison between the stepping controller (changing step length)
and our L controller (changing leg length) on the optimized aSLIP walking.
(a) The phase portrait of the forward and vertical velocities of the mass.
(b) The VLO velocities over 10 steps. (c) The system energy profiles over
time.

serve as an approximation for the lateral rolling dynamics
of the robot during 3D walking. Then a lateral stabilization
method is designed to constantly plan lateral stepping during
the Single Support Phase (SSP) to stabilize the system.

A. Linear Inverted Pendulum Dynamics

The Linear Inverted Pendulum (LIP) Model has been
widely used for fully actuated humanoids in zero-moment-
point (ZMP) walking [1]. Here, we only use the closed-form
solution of the LIP to approximate the lateral rolling of the
robot during walking. The LIP dynamics is purely passive,

ÿc = λ2yc (12)

where λ =
√

g
z0

, yc is the lateral position and z0 is the
nominal height of the point mass. Fig. 5 (a) shows the
diagram of the model. The closed form solution to this linear
ODE is,

yc = c1e
λt + c2e

−λt, ẏc = λ(c1e
λt − c2e−λt) (13)

where c1 = 1
2 (y0 + 1

λ ẏ0) and c2 = 1
2 (y0 − 1

λ ẏ0). y0 and ẏ0

is the initial condition of the LIP. Fig. 5 (b) shows the phase
portrait of the system. The asymptotes, i.e. two straight lines
(with slope λ) partition the state space into four domains. For
the lateral balancing, it is desirable to keep the system inside
the left (I) or right region (II) during the SSP. The DSP and
the alternation of stance foot can switch the system states
from one region to the other.

Following the principle of symmetry, one may want the
LIP states to be symmetric at the boundary conditions
of the SSP, i.e. y−SSP = y+

SSP, ẏ
−
SSP = −ẏ+

SSP, where the
superscript + and − represent the beginning and the end
of the SSP respectively. Given the duration of the SSP TSSP,
the boundary conditions satisfy,

ẏ±SSP = ±
λsinh(TSSP

2 λ)

cosh(TSSP
2 λ)

y±SSP := ±σy±SSP, (14)

which represent two straight lines in the phase diagram
(see Fig. 5 (c)), and the slope σ of the straight lines
increases with TSSP. This indicates non-unique solutions for
the lateral periodic motion for the LIP model. Given a desired
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step width Ws, the desired boundary condition of the SSP
satisfies, ∣∣ẏDSP

∣∣TDSP + 2
∣∣y±SSP

∣∣ = Ws, (15)

where ẏDSP is the averge velocity of ẏ in DSP. We assume
ẏDSP = ẏ−SSP since the DSP is short. Eq. (15) and (14)
together provide a desired boundary condition on

∣∣ẏ±SSP

∣∣:∣∣ẏ±SSP

∣∣ =
σWs

2 + σTDSP
. (16)

Given the predefined step width and walking periods
TDSP, TSSP from the forward walking, the LIP dynamics
suggests a desired boundary condition on the point mass
state of the SSP. The desired boundary condition is used
as a desired target reference for control. Stabilization to the
target is described in the next part.

B. Lateral Balancing via Feedback Stepping

The LIP dynamics is passive, so is the lateral roll of the
full robot. The only input to stabilize the lateral periodic
motion is the step width. Changing the step width will change
y+

SSP. As a consequence, we provide the feedback stepping
law as,

W = ŷ−SSP + ˆ̇y−SSPT̂DSP +
ˆ̇y−SSP

σ̂
−Kp(ˆ̇y−SSP − ẏ

±
SSP), (17)

where Kp is the proportional gain and ˆ represents the
estimation of the quantity for the full robot. The estimation
will be described later in the output construction for the full
robot. The first three terms in (17) together place the mass
state on the straight line with slope σ̂. The last feedback term
is based on the fact that a smaller

∣∣y+
SSP

∣∣ leads to a smaller∣∣ẏ−SSP

∣∣ for the following SSP, vice versa. The feedback term is
the opposite of conventional stepping regulation for forward

walking [8], i.e. larger step length for larger velocity. The
reason is that lateral motion in SSP is preferably staying in
lateral stepping region (the region I and II (Fig. 5 (b)) for
zero average velocity in the lateral direction; yc(t) does not
cross 0 in SSP. This further suggests a lower bound on W to
place the state [y+

SSP,
ˆ̇ySSP] in the stepping region. The lower

bound is,

W > ŷ−SSP + ˆ̇y−SSPT̂DSP +
ˆ̇y−SSP

λ
. (18)

The lower bound means the minimum step width to prevent
robot rolling over the next stance foot, i.e. getting into the
region III and IV in Fig. 5 (b), which won’t be catastrophic
but requires additional care to prevent the robot crossing its
legs during the next lateral step. Figure 5 (c) and (d) show
the application of the feedback law on the ideal LIP stepping,
for which no estimation is needed. Fast convergence to the
desired boundary velocity can be achieved with appropriate
gains.

V. CONTROLLER SYNTHESIS FOR WALKING

The previous two sections have described our trajectory
generations and feedback controls on the reduced order
models. In this section, we demonstrate that the trajectories
and feedback controls can be implemented as desired output
trajectories for controlling the 3D walking of the underactu-
ated robot Cassie. The desired output trajectories are further
stabilized via a rapidly exponentially stabilizing control Lya-
punov functions based Quadratic program (RES-CLF-QP),
with constraints on the torque limits and ground reaction
forces. One can view the feedback controller synthesis from
the reduced order models as a “high-level controller” for con-
structing and modulating the desired output trajectories, and
the RES-CLF-QP as the “low-level controller” for tracking
these trajectories.

A. The Two-domain Hybrid System of Walking

We first describe the hybrid model of the 3D walking [19],
[20] of the full robot Cassie. The Single Support Phase (SSP)
and Double Support Phase (DSP) compose the domains of
the system, i.e. D = {DSSP ,DDSP }. In DSP, two feet are
in contact with the ground. It transits to SSP when the rear
stance foot is about to lift off the ground (ground reaction
normal force becomes 0). Thus the domain and associated
guard [20] can be defined as:

DDSP := {(q, q̇, u) : hDSP(q) = 0, F Feet
z (q, q̇, u) > 0},

SDSP→SSP := {(q, q̇, u) : hDSP(q) = 0, F swing
z (q, q̇, u) = 0},

where hDSP(q) is the set of holonomic constraints in DSP.
As there is no impact at the transition to SSP, the reset map
is an identity map.

In SSP, one foot is in contact with the ground while the
other foot is in swing. The transition to DSP happens when
the swing foot strikes the ground. Therefore, we define the
domain and corresponding guard as:

DSSP := {(q, q̇, u) : PFoot
z (q) > 0, F stance(q, q̇, u) > 0},

SSSP→DSP := {(q, q̇, u) : Pswing
z (q) = 0, vswing

z (q, q̇) < 0}.

71



We model the impact between the feet and the ground as
plastic impact, the reset map of which can be found in [19].

The continuous dynamics of the system for each domain
can be obtained from (1) and (2). Finally, the hybrid control
system of walking be described by the tuple:

H C = (Γ,D,U ,S,∆, FG), (19)

where comprehensive definitions of each element can be
found in [20], [19].

B. Output Definition

To enable the walking behavior on the 3D full order robot,
we define the outputs with desired reference trajectories for
each domain of the hybrid control system. It is important to
emphasize the outputs from the reduced order models.

Leg Length. The actuation on the aSLIP model comes in
the form of leg length trajectories L(t). The trajectories are
used as the desired leg length trajectory Ldes(t) on the full
robot. The springs on the full robot are expected to behave
similarly to that of the spring-mass model when leg length
is actuated accordingly from the aSLIP model.

Leg Angle. The aSLIP optimization also provides the leg
angles of both stance and swing leg during periodic walking.
Since the robot has toe pitch actuation, it is necessary to
include the leg angles as desired outputs. We define the leg
angle βstance as the pitch angle of the line between the hip
roll joint and the toe pitch joint. We also define the virtual
leg angle as the leg angle with zero spring deflections. The
virtual leg angle is only used on the swing leg to get rid of
the springs oscillation effect on the output. So it is termed
as βswing. Note that, since the robot has compliant rotational
springs inside the leg and the toe is small, stringent stance
angle trajectory tracking is problematic. A downscaling fac-
tor is applied on the stance angle output.

Recall that the aSLIP optimization has constructed contin-
uous periodic leg length and leg angle trajectories. Additional
constructions of Ldes(t), βdes(t) are not necessary except for
the use of the feedback control law (8) and (9).

1) Outputs for DSP: With two feet contacting the ground,
the robot needs 6 outputs to fully define its motion. As
noted above, the left and right leg length are used. It is also
desirable to have zero roll, pitch, yaw angles of the pelvis.
Lastly, we use one of the stance angles. As a result, we define
the outputs for DSP as:

YDSP(q, t) =


LL(q)
LR(q)
βstance(q)
φroll(q)
φpitch(q)
φyaw(q)

−

Ldes

L (t)
Ldes

R (t)
βstance(t)

0
0
0

 . (20)

2) Outputs for SSP: In SSP, we define 10 outputs since
the robot has 10 actuators. The 6 outputs defined in DSP are
continually selected. Additional 4 outputs are on the swing
leg, which are the virtual leg angle, swing foot pitch and

yaw angles and the lateral swing foot position. Therefore,
the outputs for SSP are defined as:

YSSP(q, t) =



LL(q)
LR(q)
βstance(q)
βswing(q)
yswing(q)
φroll(q)
φpitch(q)
φyaw(q)

φswing
pitch (q)

φswing
yaw (q)


−



Ldes
L (t)

Ldes
R (t)

βstance(t)
βswing(t)
ydes

swing(t)

0
0
0
0
0


, (21)

where yswing(q) is the lateral position of the swing foot.
The desired lateral swing foot position ydes

swing(t) is constantly
constructed from the lateral step width W in (17). We
use the pelvis position as the mass position of the LIP.
The estimation of the pre-impact states is based on (13).
The current lateral pelvis state y and ẏ can also used as
the estimated pre-impact states; the desired swing width is
then a stated based feedback construction. The estimation of
walking period T̂SSP is the average of previous T iSSP; T̂DSP =
TSSP +TDSP− T̂SSP. Since the actual periods in each domain
deviate slightly from the durations of the aSLIP walking,
the simple estimations work well. The desired swing foot
position is then continuously constructed by a spline-based
curve.

C. RES-CLF-QP

To exponentially drive the outputs to zero, one can apply
the traditional feedback linearization control [21] on the
nonlinear system. However, the applied torque u from the
feedback linearization control does not utilize the natural dy-
namics of the system and may violate the physical constraints
of the walking. This motivated the work presented in [13] to
construct rapidly exponentially stabilizing control Lyapunov
functions (RES-CLF) to stabilize the output dynamics expo-
nentially at a chosen rate ε. The end result is an inequality
condition on the constructed Lyapunov function, which is,

V̇ε(u) ≤ −γ
ε
Vε(η), (22)

with some γ > 0, and η = [Y; Ẏ]. Eq. (22) can be explicitly
written as an affine condition on u:

ACLF(q, q̇)u ≤ bCLF(q, q̇). (23)

Detailed derivations can be found in [13]. The inequality on
u naturally inspires a quadratic program (QP) formulation for
solving u. The cost of the QP can be minimizing a linearly
combination of uTu and µTµ3. Therefore the RES-CLF-QP
can be formulated as,

u∗ = argmin
u∈Rm

uTH(q, q̇)u+ 2F (q, q̇)u

s.t. ACLF(q, q̇)u ≤ bCLF(q, q̇), (CLF)

3µ = Lf + Au [21] [13], which is the auxiliary input on the feedback
linearized dynamics, where A is the decoupling matrix, and Lf is the Lie
derivative.
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where H(q, q̇) = αATA+(1−α)I), F (q, q̇) = αLf
TA, and

0 ≤ α ≤ 1 is to balance the convergence and smoothness of
the QP [22] [23].

D. Main Control Law

Here we present our final feedback control algorithm for
3D underactuated walking via reduced order models.

The lower level controller is the RES-CLF-QP, which
respects the torque bounds, ground reaction force (GRF)
constraints and holonomic constraints for each domain. For
the purpose of the optimization formulation, we include the
holonomic constraint forces Fh,v as the inputs to the system
and as additional optimization variables in the QP. Then
it is easy to encode the holonomic constraints as equality
constraints and GRF as inequality constraints in the QP. The
final QP-based controller for each domain v ∈ V is:

ū∗v = argmin
ūv∈Rm+nh,v ,δ∈R

ūTvHvūv + 2Fvūv + pδ2 (24)

s.t. ACLF
v (q, q̇)ūv ≤ bCLF

v (q, q̇) + δ, (CLF)

AGRF
v ūv ≤ bGRF

v , (GRF)
ulb ≤ u ≤ uub, (Torque)
Ah,v(q, q̇)ūv = bh,v(q, q̇).(Holonomic)

where ūv = [u;Fh,v]. The formulation of each constraint
can be found in [12]. A relaxation term δ is used on
the CLF constraint to increase the feasibility of the QP.
In implementation, we find that the relaxation term may
temporarily compromise the convergence rate of the output
tracking, but the overall convergence can still be achieved
with a large positive penalty constant p.

The high level controller, which can also be viewed as
a feedback planning method, includes the sagittal part for
forward walking and the lateral part for balancing. The
sagittal part is the modulation of the desired leg length
trajectories by Eq. (8) and (9). The feedback is the forward
velocity of the pelvis at the VLO. The lateral part is the
continuous planning of the step width in SSP by Eq. (17).
The feedback is the pelvis state yc, ẏc relative to its stance
foot. Algorithm 1 shows the final feedback control law.

VI. SIMULATION RESULTS

The proposed feedback control method is primarily im-
plemented in simulation of the 3D underactuated bipedal
robot Cassie shown in Fig. 1. The dynamics is numerically
integrated using MATLAB’s ode113 function with event
functions. The QP is formulated and solved every at 0.5ms
using qpOASES [24].

The simulation routine mainly follows that in Algorithm 1.
Desired walking behavior is first described by step length,
width and duration ranges of each domain. We use aSLIP
trajectory optimization to find periodic solution of leg length
and leg angle trajectories, along with the exact optimized
durations of each domain. The desired boundary condition
for the pelvis lateral states in SSP is then calculated from
the LIP model. Then the simulation is started from an initial
static standing configuration q0 of the robot. In order to

Algorithm 1 The Feedback Control Law
Input: Desired behavior: step length and width, durations

1: L(t), β(t), TSSP, TDSP ← aSLIP optimization
2: ẏdes from Eq. (16),
3: Γ = 1
4: while Simulation/Control loop do
5: if SSP then
6: ydes

swing(t)← Eq. (17)
7: if VLO then
8: Γ← Eq. (11)
9: end if

10: end if
11: L(t), L̇(t)← Eq. (8) (9)
12: Ydes

SSP/DSP(t)← t,
13: u← Eq. (24)
14: end while

initiate walking toward the desired behavior, we apply two
SLIP models for the initial DSP and SSP before the periodic
walking. The desired output trajectories are constructed
similarly as the walking.

Fig. 6 shows the simulation results. The walking is not
like conventional underactuated walking in that it does not
converge to an orbit exactly; it converges to a stable region.
The reason may come from the fact that the QP is solved
discretely and the springs increase certain numerical errors
in the process. Despite that, the spring forces resemble the
ground reaction force well. The forward velocity is stabilized
to the desired VLO velocity. Lateral boundary velocities
converge to the desired value 0.2m/s. Overall, the walking
behaves like that of the aSLIP and the lateral balancing
converges like the LIP stepping.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a feedback planning and control
methodology for controlling walking on a 3D highly under-
actuated bipedal robot Cassie via reduced order models. The
trajectory feedback planning consists a leg length feedback
planning from our aSLIP model and a lateral stepping plan-
ning from the LIP model. The low level control for trajectory
tracking is achieved using optimization-based control.

Future work will be devoted to the experiment implemen-
tation on the physical robot. The authors would also like to
extend this feedback control method to general bipedal robots
with or without compliance or foot actuation for generating
various periodic locomotion behaviors. Theoretical guaran-
tees will be to developed for understanding the stability of
the walking achieved from coupled reduced order models.
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