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Abstract— Many objects in a human-made environment
have elongated shapes for easy manipulation and grasping.
As humanoid robots are working in this environment, they
require proper sensing and perception of such objects. Current
approaches are providing mainly the perception of rigid objects,
but many everyday items are non-rigid and more challenging
to track due to their substantial shape variability. We want
the robots to be able to grasp and manipulate thin, elongated,
deformable objects. We propose a system based on the Deep
Neural Network that can predict the bend angle of such objects
using the single RGB image only. In our paper, we present the
proposed neural network architecture used for prediction of
the bending angle and finding the elongated shape in images
with a cluttered background together with the dataset used for
training. We observed that the proposed system even though it
was trained on synthetic data was able to perform well on real
data. The proposed architecture also provide us with the ability
to hallucinate how the deformable pipe with any initial bend
would look like when subjected to the arbitrary bend angle.
Our findings have more profound consequences than the above
mentioned. We were able to show that the proposed Encoder-
Decoder neural network architecture has the interpretable latent
vector element for describing a measurable physical bend angle.
Moreover, we allow bending arrows to be situated out of the
image plane. In the future work, we are planning to extend the
current approach with the prediction of the full 3d shape of
the elongated object from a single RGB image.

I. INTRODUCTION

Many objects in human-made environments have elon-
gated shapes as this allows easy grasping and manipulation
of such objects. There is a biological evidence [1] that the
elongated visual stimuli can lower ambiguity during grasp
preparation as it provides a coarse cue to hand shaping and
orientation that is sufficient to support an action planning. As
humanoid robots are performing grasping and manipulation
in human-made spaces, they require proper sensing and
perception of such objects. In our case, we are providing
this ability to the robotic system through the use of Deep
Neural Networks, which are state of the art Al techniques
used in the machine vision.

Object tracking and measuring are common research
themes in the computer vision [2], [3]. The results of such
research can be directly applied to humanoid robots perform-
ing the manipulation or grasping. However, in most cases,
the problem is only solved for rigid objects. Whereas, many
everyday objects are non-rigid and are more challenging to
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track due to their substantial shape variability. It is typical to
tackle the non-rigid object tracking with the use of RGB-D
cameras [4] that gives explicit information about the position
of the object’s elements. However, there is a question if we
could perform tracking and measuring of such objects with a
single camera for example when the robot is equipped with a
stereo pair and the object is texture-less (no correspondences
to establish disparity map)?

In our work, we provide a system, which allows for the
tracking and measuring the bending angle of elongated, thin
and deformable objects from a single RGB camera. The goal
of the presented system is to measure the bend angle of
the hose (flexible pipe), based on two images (before and
after deformation), in the real time. To implement that, we
proposed the Encoder-Decoder neural network architecture
with an interpretable latent vector element for describing
a measurable physical bend angle. Latent space can be
associated with the feature space, but only one element is
forced to express the feature understandable to humans. This
approach sheds the new light on the understanding of the
representation transformations taking place within artificial
neural networks and allows one to generate (hallucinate)
images with the control over non-trivial image features, i.e.
bend angle. We also contribute through providing the new
dataset for an assessment of robot vision systems dealing
with elongated objects that will be soon publicly available.
An essential feature of the proposed solution is the fact that
although the entire training procedure was carried out on
synthetic data, the test results on real data are still of high
quality. Moreover, we allow bending arrows to be situated
out of the image plane.

Presented solution can be used in a plethora of tasks in
the robotic manipulation. Besides monitoring the bent level,
estimation of the bending angle together with measurement
of forces applied to the deformable object can be used
for predicting material properties. From the other hand,
generative abilities of the presented model can be used to
validate the measurements of the bent angle in the presence
of occlusions which is important in single camera vision
systems. Moreover, hallucinating the desired object shape
can be used in the visual servoing.

In the remainder of the paper, we will first present related
work. Then, we will describe our dataset consisting mostly
of synthetic images (training stage) and real data (testing
stage). Next, we will focus on the deep neural network
architecture with an interpretable transformation of the image
representation. Then, we will describe our results and finally
concluding remarks will be given.



II. RELATED WORK

In the recent robotics literature, one can find a couple of
examples of robotics systems dealing with deformable, thin
and elongated objects. There is a publication on the knot
tying [5] with two arm PR-2 robot. Additionally, one can find
works on this topic, where the generic physics engines [6]
or specific ones [4] are used for tracking deformable objects
(including ropes) using point clouds. A separate topic is a
robot control when manipulating an elastic rod [7]. There a
theoretical background to the execution of such a task was
provided. Such a control system requires an input from the
vision system like the one that we present in this paper.

Additionally, thin objects have also gathered some at-
tention and special treatment in computer graphics. Thin
structures are investigated in image-based rendering [8] or
are handled with much care in the point-based 3D recon-
struction [9]. Latest paper on the reconstruction of thin
structures of manifold surfaces is focused on the use of
spatial curves [10]. The main problem with thin objects is
that they are composed of a couple of pixels (points), which
in many cases are missing (no object continuity) due to the
missing data from 3D sensing devices such as passive and
active stereo cameras [11]. Therefore, in our approach, we
focused our attention on the single RGB camera setup.

Also, there are other application areas, besides robotics,
where is a need of segmenting elongated objects, e.g. medical
research — cell segmentation [12]. Additionally, the detection
of thin elements is of particular interest in a visual inspection
of infrastructure as it is used for detecting cracks in concrete
or steel structures [13]. Especially in checking the road
condition [14] or assessing the state of nuclear power plant
reactors [15].

The problem described in this paper is highly related to the
computer vision, where fundamental object transformations,
like rotations or translations, have a solid foundation in the
mathematics [16]. Similarly, the deformation of the surface
of elastic objects is well described using the thin plate
spline transformation proposed in [17]. However, that method
requires two sets of points from a base and deformed image,
which are in general relatively hard to obtain. Our approach
is far more specific and less formal than the thin plate
spline transformation, but much easier to apply. Concerning
Deep Neural Networks and rigid body transformations rep-
resentation, especially rotations, an interesting approach was
proposed by Worrall et al. [18]. They encoded the image of a
rigid object (no shape change) at the specific rotation, along
with a selected rotation axis, into a latent vector, which can
be rotated the same way as vectors in the Euclidean space,
allowing to rotate the object in the image. Based on this
assumption, in our work, we tried to describe the bend angle
of the deformable hose (shape change) in a similar manner.

The work focused on a similar application, a problem
of bending elastic objects, but using a different approach,
2D contours and grids drawn on the objects was described
in [19]. The authors used classical segmentation algorithms,
no learning part, to distinguish an object on the scene,
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Fig. 1. Single synthetic dataset element: (top left) base pipe (g = 1rad;
(top right) deformed pipe {(p = 2.3rad; (bottom left) base pipe ground
truth mask, (bottom right) deformed pipe ground truth mask.

but they focused on the deformations where the bending
arrows of the photographed objects lay only in the plane
perpendicular to the optical axis of the camera.

III. DATASETS

In this paper, we present three datasets: Synthetic I (S1),
Synthetic II (S2), both created in Blender, and Real (R)
created manually with a phone camera. The S1 set is our
basic dataset, which is meant to be used as a training set.
S2 is a more complex set, which is meant to be used for the
validation of generalisation abilities. Finally, R is a small
testing dataset, which contains only real data samples. We
provide these datasets, as to best of our knowledge there is no
similar set of data providing a possibility of testing robotics
systems working with thin, deformable, elastic objects. The
use of synthetic data is indispensable in training data hungry
Deep Neural Networks, and it is currently widespread prac-
tice in the Machine Learning [20]. Synthetic data generation
gives us ease of providing ground truth data and full control
of the environment. This is of course at the cost of having the
reality gap, which might not be compensated by the trained
system.

A. Synthetic Images Datasets

Set S1 contains 10000 different pipes in 26 bend an-
gles each (0,0.1,...,2.5rad). The diversity in that dataset
is achieved due to the randomly chosen background from
ILSVRC2015 [21] dataset, pipe colour (each component is
selected from the range 26-230 in a 256-level scale), position,
orientation (selected from a range from -45 to 45 degrees
for out of the plane rotations and -180 to 180 degrees for
a planar rotation), diameter, length, glossiness and the light
source position.

Set S2 contains 13600 different pipes in 26 bend angles
each (0,0.1,...,2.5rad), it shares the backgrounds with S1,
but it is more complex due to the second light source and
broader ranges of pipes widths and lengths.

For training purposes, every dataset element contains four
images: 2 images of pipes (with different bend angles) on



Fig. 2. Single real dataset element: (left) base pipe (g = 0.25 rad; (right)
deformed pipe (p = 1.76 rad.

backgrounds gathered from ILSVRC2015 images and two
ground truth masks, with ground truth bend angles. Examples
of the generated dataset elements are shown in the Figure 1.

Generated sets were split into three subsets train, val-
idation and testing. These subsets were disjoint both in
background images and bend angles. Two different divisions
of the datasets were proposed:

I Tr VaTe Tr Va Te ...

II Tr Va ... Tr VaTe ... Te Tr Va ... Tr Va
where: Tr stands for the training set element, Va — validation
and Te for the test and each subsequent elements had 0.1 rad
difference. Through that splits authors wanted to verify the
network ability to generalise over bend angles. In split I the
concern was “how at least 0.3 rad difference in the training
dataset will affect the quality of transformation of pipes,
which lies in between”, whereas in split II ”if it is possible to
generalise from angles in range [0.0; 0.6]U[1.7; 2.5] to angles
between those two intervals. Each subset, in both configura-
tions, contains about 40000 labelled pairs of images.

B. Real Images Dataset

The collection of images of real pipes R is a key element
in verifying the performance of the proposed system. It is
organised in 8 groups, in which in the same conditions, the
pipe with different bend angles was pictured. It consists of
47 images in total, for which it is possible to generate 164
different pairs of base and bent pipes (due to combinations
of pipes in the same group), with pipes bent at an angle
from 0-1.76rad. As the entire dataset is used for testing
purposes, this set does not contain the ground truth masks
for input images. Therefore, a single dataset element consists
of only two images (e.g. see Figure 2) and information about
the bend angle in radians.

IV. INTERPRETABLE NEURAL TRANSFORM

In general, it is desirable to understand transformations
introduced by any system, which we are about to use. This
understanding is crucial in robotics applications, where inter-
action with the physical world is performed. Understanding
becomes more difficult, the more complex the system is.
Moreover, it is tough for humans to understand the meaning
of vectors in some arbitrarily chosen vector space. A great
example of such complexity is the deep neural network,
where transformations change every weights update, and
created spaces often do not have intuitive and visible in-
terpretations. There was much work done, especially in
image processing field to understand how the neural network
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process the picture, which regions are critical and what
is the meaning of particular filters in hidden layers [22].
A noticeable step in that field was made by Worrall et
al. [18]. They introduced the neural network, in which the
output can be transformed with the use of the well-known
mathematics apparatus. The image of a rigid object (no shape
change) at the specific rotation is encoded into a latent
vector, which can be rotated the same way as vectors in
Euclidean space allowing to rotate the object in the image
in a controlled way. In our work, we decided to go even
further and to train the neural network to produce at the
output the representation of the object in a multidimensional
space, in which one axis is imposed by the authors and have
clear physical interpretation. Unfortunately, that interpretable
feature is biased, thus the base image is required as the
reference.

A. Network architecture

To tackle the deformation of the elastic object, particu-
larly the bend estimation, the Encoder-Decoder architecture
extended by the additional interpretation layer was proposed
(bender network). The overview of the network architecture
is shown in the Figure 3.
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Fig. 3. Bender network architecture. Conv2D stands for 3x3 convolution
layer with ELU(exponential linear unit) activation function and max-
pooling layer. UpConv2D stands for transposed convolution layer with ELU
activation function, strides (2,2) and 3x3 kernel.

The network has two inputs for the reference image and
the deformed image. Two images are passed through the
Encoder to obtain the latent vector representation. Additional
transformations block is the key point in our neural network
architecture, because it allows enforcing a desired latent
vector configuration. In a basic scenario that block is used
for the computation of the difference between the base image
and deformed image vectors along the selected feature, which
is the estimate of the bend angle difference. Moreover, it
allows to transform the base image latent vector to obtain
an image of the same pipe, but with changed bend angle.
That generative behaviour is obtained by adding an angle
(expressed in radians) to the selected element of the latent
vector. We have a direct, measurable control over the bending
angle.



Unfortunately, it is hard for the bender network to simul-
taneously learn how to represent the angle and the image
background in the latent space. To mitigate that difficulty, we
proposed splitting the challenge into two stages: extraction
of the pipe from nontrivial background then processing the
pipe image with the neutral background. To perform the
mentioned extraction, UNet [23] like architecture was pro-
posed. That neural network called Mask Generation Network
processes two RGB images stacked together along with
the third dimension and produces two binary masks. The
architecture is shown in the Figure 4.
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Fig. 4. Mask generation network architecture. Conv2D stands for convolu-
tion layer with leaky ReLU activation function 3x3 kernel (last convolution:
1x1 kernel). UpConv2D stands for transposed convolution layer, strides (2,2)
and 3x3 kernel. Two arrows pointing one block means that block operates
on stacked input tensors.

B. Deformation Estimation and Image Generation

Tasks specified in the title of this section are computed in
the different parts of the network, but they are closely related
to each other. That relation is visible during the training
phase when gradients returned by the Decoder (which is
responsible for image generation) accelerate the training of
imposed image representation created in the Encoder.

The following formula gives the estimation of the pipe
bend angle:

C = ED(TB)l — EH(TD)l, (1)
where: Tp and YTp are the base and deformed image
consecutively. En is a transformation function introduced
by the Encoder. In that particular setup, first elements of
both vectors were chosen, but in general, it can be any
element (the same for both vectors) due to the usage of fully
connected layer at the end of the encoder. The second part of
the proposed system is responsible for the image generation
from the interpretable latent vector. The further insight into
these to parts of the system is given in the next two sections.
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C. Training procedure

Training procedure consists of two stages:

1) mask generation and bender training,
2) training of end-to-end network (pre-trained mask gen-
eration stacked at the top of pre-trained bender).

The first stage consists of two independent training pro-
cedures of mask generation and bender nets. It can be
performed in parallel. In the mask generation network, the
logarithmic loss function was used to produce a belief map. It
has to decide whether the pixels belong to the pipe or not. For
the bender, the training loss is a sum of two factors: image
decoding and latent vector loss. The image decoding loss
is responsible for achieving the accurate image generation,
while the latent vector loss penalises the relative pipe bend
estimation error. It is defined as a sum of squares and
absolute difference between the estimated CA and the ground
truth value of the bend angle (.

Image decoding loss was defined as the Euclidean norm
of the element-wise difference between target I and the
generated image I. Loss; is given in the Equation 2. It
was investigated that the L2 norm gives better results than
L1 [24]. The likely reason for that is the fact that the decoder
was learning faster. Because of that, it managed to learn a
certain invariance along the selected dimension, so it was
not able to propagate sufficiently large gradients back to the
Encoder.

Lossy = ||[I — 12 2)

In the bender training phase, the selected element of the
latent vector of the base image (p is translated along a
specified dimension by the —f, which should be relatively
close to (p and then it is decoded. The result of the decoding
operation should generate a pipe similar to the deformed
pipe. Latent vector loss function is defined as a Losss in the
Equation 3. Total loss function for the bender architecture is
defined as a sum of Loss; and Losss. Figure 5 presents the
image decoding and latent vector losses for the validation
dataset during the bender training. Both charts illustrate that
after approximately one epoch there was a sudden drop in the
loss values. It can be interpreted as the proper identification
of a physical trait, which we have imposed as the one that
should be represented by the specified dimension of the latent
vector.

Lossy = (Cg — ¢ — C(p)* +|¢s — ¢ — Cp|

The second stage of the system learning is focused on the
training of the end-to-end system using only bender losses to
subordinate the mask generation performance to the bender.
That stage was the longest one, whereas separate bender
and mask generation training lasted about 1-2 hours, the
collaborative training could take up to 8 hours.

3)

V. EXPERIMENTAL RESULTS

Experimental verification was taken in four phases:
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Fig. 6. Bender network test: (left) reference pipe, (middle) bent pipe,
(right) reference pipe bent to the same angle as bent pipe.

Bender loss for validation dataset in number of training steps.

1) verification of bender network with the use of pipes on
black (neutral) background,

tests of the whole network (bender+mask generation)
on synthetic and real datasets,

tests of the whole network (bender+mask generation)
on a real dataset,

tests of the generative abilities of the network.

2)
3)

4)

A. Bending pipes on the black background

That stage was a preliminary procedure to prove that the
idea of the interpretable neural transformation can provide
a correct bend angle difference between pipes. Achieved
bending abilities are depicted in the Figure 6. Mean of
absolute errors are below 0.02rad. The results of this test
proved that it is possible to estimate the bend angle and
manipulate the pipe bend angle.

B. Bending pipes on the ILSVRC background - synthetic
datasets

In this part of the experiments, the quality of the merged
mask generation and bender model was tested. The results of

701

Fig. 7. Test case from S1 dataset: (left top) reference pipe, (top middle)
reference pipe with masked out background, (top right) reference pipe bent
to the same angle as bent pipe, (bottom left) bent pipe, (bottom middle)
bent pipe with masked out background, (bottom right) ground truth bent
pipe without the background.

that tests are shown in the Table I with data splits presented
in the Section III-A. Our solution exhibits an ability to
infer the correct behaviour on previously unseen data based
on similar examples, which differ from each other in the
pipe bend angle, colour, glossiness, light source position
and background picture (S1). Mean Absolute Error (MAE)
level reached on S1 suggests, that trained mask generation
introduces almost no overhead in the final results. It is
visible that changes in the data (S2), such as a second light
source and more diverse pipes resulted in worse scores. The
reason for such a significant difference is, that those changes
affect the procedure twice, both the mask generation and
bender. Exceptionally high level of centile 95 and standard
deviation, combined with a small median of errors suggest
that, if the pipe differs significantly from the pipes from the
S1 dataset, the generalisation abilities of our solution are
limited. That data gap shows how important is to expose the
network during the training on synthetic data, which covers
a diversity of the testing dataset. That gap simulates the
expected behaviour, generalisation abilities of our solution
on datasets, which differs substantially from the training set.
Example of the test case is shown in the Figure 7.

C. Bending real pipes

In last, but not least, part of angle estimation experiments
the real pipes bend angle estimation was considered. MAE
values achieved in that setup are slightly higher than those
obtained on the S2 dataset, but standard deviation and
centile 95 is twice smaller (see Table I). Furthermore, MAE
obtained for S1, and S2 datasets differ significantly between
the two splits, what is not observed for the R dataset. Those
phenomena combined with the very high median suggest the
constant bias in the whole R dataset. It can be assumed
that some not modelled features of natural environment
had the significant impact on the system accuracy. One of
those features can be the light colour, which was fixed in
the training dataset and varying in the real dataset. Other
differences are in the strong assumptions made in synthetic
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TABLE I
ERROR STATISTICS OF THE BEST MODELS ON THE TEST DATA FOR I AND
II DATASET SPLIT

Dataset,| MAE| c(MAE) | Median| 95th %tile | Max. error
split [rad] | [rad] [rad] [rad] [rad]
SI, 1 0.038| 0.060 0.020 0.129 1.354
S2,1 0.257| 0.506 0.045 1.443 4.428
R, I 0.184| 0.163 0.165 0.491 0.665
S1, 11 0.019| 0.025 0.012 0.061 0.850
S2, 11 0.151| 0.338 0.021 0.908 3.923
R, I 0.182| 0.151 0.155 0.444 0.738

sets, where bent pipes were the torus segment, what was not
ideally kept in the real one. Moreover, in a real dataset one
can observe small changes in the environment as well as
in the pipe position. All of those effects explain the worse
results, but also give an insight into what traits should be
covered in the training set to obtain better results. Maximum
errors provided in the Table I are showing that there are some
outliers, but they do not affect the MAE score significantly.

D. Bent pipes generation — hallucinating the deformation

In that part of the test, the generation abilities of the neural
network were tested. Figure 8 depicts that it is possible
to generate the same pipe but bent differently from a base
image of a real pipe. An important insight is that bending
works consistently even for the bend angles from the outside
of the training set, but it is not perfectly accurate. The
major constraint is that the zero level of the generation is
significantly biased.

E. Environment and performance

Experiments were conducted using the NVIDIA GeForce
950M GPU with 2GB RAM and 768 CUDA cores. Processed
images were re-scaled to fit the 128x128 window at the
very beginning. In that setup, the inference process with the
single image generation takes 0.023 s per images pair in the
average, and it is never greater than 0.025s. Without image
generation (the pure bend angle estimation) the average time
is 0.016 s and no more than 0.018 s per images pair.

VI. CONCLUSIONS

In our work, we proposed an end-to-end system that can
generate the supposed view of an elongated object subjected
to the arbitrary angle of bending. First of all, to develop the
machine learning algorithm, the dataset of bent elongated
objects was prepared. After that, we proposed a deep neural
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Sequence of generated images of bent pipe (base pipe in red frame, consecutive pipes differs by 0.1 rad)

network and performed extensive tests of it. We proved that
our system can perform the localisation of the elongated
object (even on the cluttered background) and then generate a
view of its bent version. Moreover, the localisation and angle
estimation can be run simultaneously, achieving the real-time
performance. Also, in our work, we showed that through the
change of one, arbitrarily chosen variable from the latent
vector of the autoencoder we can influence the bending angle
of such objects in the resulting image providing measurable
physical quantity (in radians).

For further work, we find it very interesting to investigate
more possibilities in such manipulation of the latent repre-
sentation to know how the deformations are encoded in this
space and how we can influence them to achieve desired
results. We are also planning to extend the current approach
with the prediction of the full 3D shape of the elongated
object from a single RGB image and estimating a physical
parameter — bending stiffness.
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