
Learning Dual Arm Coordinated Reachability Tasks in a Humanoid
Robot with Articulated Torso

Phaniteja S1∗, Parijat Dewangan1∗, Pooja Guhan1, Madhava Krishna K1, Abhishek Sarkar1

Abstract— Performing dual arm coordinated (reachability)
tasks in humanoid robots require complex planning strategies
and this complexity increases further, in case of humanoids with
articulated torso. These complex strategies may not be suitable
for online motion planning. This paper proposes a faster way
to accomplish dual arm coordinated tasks using methodology
based on Reinforcement Learning. The contribution of this
paper is twofold. Firstly, we propose DiGrad (Differential
Gradients), a new RL framework for multi-task learning in
manipulators. Secondly, we show how this framework can
be adopted to learn dual arm coordination in a 27 degrees
of freedom (DOF) humanoid robot with articulated spine.
The proposed framework and methodology are evaluated in
various environments and simulation results are presented. A
comparative study of DiGrad with its parent algorithm in
different settings is also presented.

I. INTRODUCTION

Humans use both arms in a coordinated manner to accom-
plish many day-to-day tasks. In a human-like robot scenario,
using both arms of a robot increases load capacity without
any changes in the system, making it an interesting and ongo-
ing research topic. Apart from this, dual-arm manipulation is
useful in many industrial scenarios [1], [2] where coordinated
tasks need to be performed for instance, lifting heavy boxes,
tightening a nut and bolt, cutting etc. In particular, dual-
arm coordinated tasks in case of humanoid robots provides
uniform distribution of load (makes balancing easy), besides,
increasing load handling capacity. However, before the dual-
arm manipulation problem is addressed, dual-arm reachabil-
ity and grasping problem has to be solved.

The reachability and grasping problem usually consists
of finding the inverse kinematics solution that can give a
valid grasp. Some works [3], [4] store the entire reachability
space and search it for the valid grasps. The main drawback
of this method is that a large memory is needed to store
the reachability space and this increases drastically with
the increase in degrees of freedom. Another way is to
find a configuration by calculating inverse kinematics on
the go and then validate the grasp solutions. Hence this
method involves searching [5]–[9] for a feasible inverse
kinematic solution that can provide valid grasp solutions.
However, when criteria like stability is also included (bipedal
robots), the main problem lies in finding a valid and stable
inverse kinematics solution which usually takes a long time
and hence is inappropriate for online motion planning. The

*These authors have contributed equally.
1All the authors are with Robotics Research Center, International Institute

of Information Technology, Hyderabad, India {phaniteja.sp,
parijat10, poojaguhan97}@gmail.com,
{mkrishna, abhishek.sarkar}@iiit.ac.in

Fig. 1: Left: Humanoid with articulated torso grabbing an
object. Right: Trajectory followed by humanoid to grab the
object.

extension of these methodologies to dual arm scenarios are
provided in [1], [10]–[12]. One can see that the humanoids
[10], [13] used in these works have torso shaped as box
with limited DOF and two arms having large DOF. The
main advantage of this kind of structure is that there is
limited dependency on the torso while performing dual arm
coordinated tasks.

Humanoids with articulated torso like Acroban [14],
Poppy [15] etc. can perform more complex manipulation
tasks compared to the robots without articulated spine. This
comes at the expense of more costly computations and com-
plicated mathematical formulations. Dual arm coordination
in such robots is highly dependent on spine and this makes
it difficult to find a valid IK solution. Especially, calculating
valid IK configurations in such structures is not a well solved
problem in a classical methodology. Learning based ap-
proaches [16] provide a very good alternative for performing
complex manipulation tasks in the above mentioned robots.
Specifically, Reinforcement Learning (RL) [17] provides a
very good framework and some intitial works used it for
learning motor control [18] and to teach a biped how to
walk [19].

Among the recent advancements in the field of Deep Re-
inforcement Learning (Deep RL), Deep Deterministic Policy
Gradients (DDPG) [20] provided an efficient framework for
learning tasks in continuous domain. In [21], the authors
presented a modified version of DDPG for teaching a 7 DOF
manipulator to open a door. In our recent work [22], we show
how DDPG can be used to learn stable Inverse Kinematic
solutions of a humanoid robot. In the case of humanoid
robots with articulated torso, finding valid IK configurations

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7282-2/18/$31.00 ©2018 IEEE 690

for dual arm coordinated tasks is not a well solved problem.
This paper proposes a methodology based on Deep RL to
address this problem.

The contribution of this paper is twofold. Firstly we
propose a model-free deep RL based framework, DiGrad,
for learning continuous control tasks of multiple kinematic
chains having a shared kinematic chain between them. This
new framework, based on DDPG, is proposed in the context
of robotics and comparative results are presented between
DiGrad and DDPG. Results show that DiGrad is stable and
performs better compared to DDPG in the same scenarios.
Secondly, we apply the proposed framework to learn the
dual arm coordinated tasks in a 27 DoF humanoid robot
with articulated torso [23] (Fig. 1) in cluttered environ-
ments. We show that DiGrad successfully learns complex
3D coordinated tasks in three different settings with varying
levels of difficulty. In all these settings, along with finding
the final IK configuration, we show that the framework
is able to learn the joint trajectories that are needed to
reach the final configuration. All these results are shown
in MuJoCo [24] simulation environment. Also, once learnt,
the proposed methodology involves only the forward pass in
neural networks to safely reach the final configuration and
hence, it is appropriate for online motion planning.

II. DIGRAD

In any standard RL environment [17], there is an agent
and an environment. The agent in state s performs an action
a on the environment and the environment gives out the
updated state s′ and the reward r back to the agent. The main
goal of the RL is to maximize the cumulative reward in an
episode. An episode is described as a sequence of states,
actions and rewards, which ends with terminal state. We
suggest readers to go through [17] for a detailed explanation
of RL and actor-critic algorithms. Development of elegant
Deep RL algorithms [20], [25] in recent times provided a
framework for learning continuous control of manipulators
[21]. However, DDPG performs poorly when complex tasks
using multiple kinematic chains are involved. Therefore,
in this section we present an algorithm, DiGrad, based on
Differential Policy Gradients to learn such complex tasks.

A. Differential Policy Gradient Theorem

Consider k tasks in a standard reinforcement learning
environment that are needed to be learnt together and have
the same state space. Let ri be reward corresponding to ith

task, i = 1, 2, .., k. Let the critic network Q be parametrized
by θQ and actor network µ by θµ. The critic network Q
outputs multiple action-values each corresponding to a task.
DiGrad aims to learn the compound policy µ by splitting it
into multiple sub-policies µi and taking a combined update
using these sub-policies. Before explaining the differential
policy gradient theorem for compound policy, we define the
differential policy gradients.

Definition 1. Suppose Qi is the action-value function
corresponding to ith task obtained by performing action
ai in state s. Let µi be the sub policy corresponding

to the action ai and µ be the compound policy. Then,
∇aiQi(s, ai|θQ)∇θµµi(s|θµ) is called the Differential Pol-
icy Gradient for i = 1, 2, .., k.

Theorem 1. The policy gradient for the compound policy µ
in terms of differential policy gradients is given by,

∇θµJ ≈
k∑
i=1

E[∇aiQi(s, ai|θQ)∇θµµi(s|θµ)] (1)

where ai = µi(s|θµ) and E refers to expected value.

The proof for the above theorem is provided in the
supplementary material1(Theorem 1). There can be cases
where a set of actions affect more than one tasks. We call
this set of actions as shared actions as. For example, consider
the case of the 27 DoF humanoid as shown in Fig. 1. It has a
multi-chain architecture in upper body where a 5 DoF spine
is shared between two chains (two arms). Thus, the spine
contributes to reachability tasks of both hands. Therefore,
we can say that the spine acts as a shared action for tasks
that require coordination of both arms. In such cases where
a set of actions as are shared between all the tasks, the
policy gradient update mentioned in (1) needs to be modified.
The following theorem and corollary, whose proofs are given
in the supplementary material1(Theorem 2 and Corollary 1
respectively), illustrate this modification.

Theorem 2. Suppose a set of actions as are shared between
all k tasks, then the updated policy gradient for compound
policy µ is given by,

∇θµJ ≈
k∑
i=1

E[∇adiQi(s, ai|θ
Q)∇θµµdi (s|θµ)]

+E[
k∑
i=1

∇asQi(s, ai|θQ)∇θµµs(s|θµ)]

(2)

where adi = {ai − as}, µdi = {µi − µs} and ’−’ represents
set difference.

Corollary 1. (Heuristic of Direction) Suppose a set of
actions as are shared between all k tasks, then the updated
policy gradient for compound policy µ in direction of Pareto
front is given by,

∇θµJ ≈
k∑
i=1

E[∇adiQi(s, ai|θ
Q)∇θµµdi (s|θµ)]

+
1

k
E[

k∑
i=1

∇asQi(s, ai|θQ)∇θµµs(s|θµ)]

(3)

where adi = {ai − as}, µdi = {µi − µs} and ’−’ represents
set difference.

B. Algorithm - DiGrad

Let’s denote the reward corresponding to the ith task as
ri(s, ai) and let γ be the discount factor. The RL agent

1Supplementary material can be found in
robotics.iiit.ac.in/people/phani.teja/Humanoids SM.pdf

691

performs a compound action a on the environment in state s
and moves to new state which we denote by s′. Now, critic
network Q(s, a|θQ) is updated by minimising the following
loss function:

L(θQ) =

n∑
i=1

(Qi(s, ai|θQ)− yi)2 (4)

where yi is the target given by:

yi = ri(s, ai) + γQi(s
′, µ(s′|θµ

′
)|θQ

′
)

and Qi represents the Q-value corresponding to ith task.

Update on actor network with learning rate η is given
by:

θµ = θµ + η∇θµJ (5)

where ∇θµJ is given by either (1) or (3).

In order to stabilize learning process, target networks
θQ

′
, θµ

′
are used for both critic and actor as in DDPG. Target

networks are slowly updated by using τ << 1 as follows:

θQ
′
= τθQ

′
+ (1− τ)θQ

θµ
′
= τθµ

′
+ (1− τ)θµ

(6)

We use experience replay which addresses the issue of data

Algorithm 1 DiGrad

1: Randomly initialise actor (µ(s|θµ)) and critic network
(Q(s, a|θQ)) with weights θµ and θQ.

2: Initialize the target network with weights θµ
′ ← θµ and

θQ
′ ← θQ.

3: for i = 1 to Emax
4: Initialise random noise N for exploration.
5: Reset the environment to get initial state s1.
6: for t = 1 to Stepmax
7: Get action at = µ(st|θµ) +N .
8: Execute compound action at and get the reward

vector ~rt, which contains rewards of all the tasks.
9: Get the new state st+1.

10: Store transition (st, at, ~rt, st+1) in replay buffer B.
11: Randomly sample a mini-batch M from replay

buffer B.
12: Update critic θQ according to Eq. (4).
13: Spilt sampled compound actions at into ai, adi and

as.
14: Calculate differential policy gradients with respect

to their corresponding sub-actions ai,adi ,as as
given in Eq. (1) or (3).

15: Update actor policy θµ according to the calculated
differential policy gradient above.

16: Update the target networks θµ
′

and θQ
′
.

17: end for
18: end for

being dependent as most of the optimization algorithms need
samples which are sampled from identically independent

distributions (i.i.ds). Hence, we use a replay buffer R which
stores the data of every step. For training, we randomly
sample from the replay buffer which ensures that samples
drawn are from identically independent distributions.

Complete algorithm and implementation details are pro-
vided in Algorithm 1. Our framework and training algorithm
is very similar to DDPG except in following points. The
major difference lies in the updates of actor as well as
critic networks. In DiGrad, the actor network is updated
according to the differential policy gradient theorem and
critic update follows the modified loss function, shown in
Eq. (4). Another difference is the way in which the actions
are treated in DiGrad. In DiGrad, each action ai has its own
reward ri unlike DDPG where a single global reward is used
for the compound action. Thus, critic network in DiGrad
approximates Q-value for all the tasks separately, unlike one
Q-value for all the tasks in DDPG. Also, DDPG does not
have the concept of a compound action. Lastly, the flow
of gradients in the actor network is not uniform in DiGrad
(and hence Differential Policy Gradients) and differential
policy gradient theorem presented in the previous subsection
complies with this argument. In other words, the compound
action a is just concatenation of all actions ai, and individual
(or different) gradients for each action ai (or as) with respect
to their corresponding Qi flows into the actor network.

III. LEARNING DUAL ARM COORDINATED
REACHABILITY TASKS

Learning dual arm coordination in humanoids with articu-
lated torso using DiGrad is discussed in this section. Before
discussing training process, we present the description of
state vector and reward function modelling, as they are key to
any RL algorithm. We also present the network architectures
used for training and their corresponding hyper-parameters.
We start off by discussing the environment used for training
and then proceed to descriptions of above mentioned things
in later subsections.

A. Environments
DiGrad was used to learn dual arm reachability tasks,

where the humanoid robot learns to grab an object using
both the hands, taking into consideration collision avoidance
and stability criteria. The framework was tested in 4 different
environments with varying difficulty levels. In each of these,
the robot is trained to grab an object(cube/book) which
is randomly sampled within its configuration space. The
description is as follows:

1) A simple 3D environment with no obstacles: In this
setting, the robot is trained to grab a cube in an empty
surrounding with both hands (Fig. 4A).

2) 3D environment with randomly placed obstacles: This
setting is similar to the above one, except for three sphere
shaped obstacles which are included in the environment.
Positions and sizes of these spheres are sampled randomly
in each episode (Fig. 4B).

3) Cuboid on a Table: In this setting, environment con-
sists of a table and objects to be grabbed are sampled at
random positions on the table in each episode (Fig. 4C).

692

4) Book on a Shelf: This environment setting is similar
to previous environment but even more complex, since valid
configuration space of robot is highly restricted, due to a
large increase in probability of collision. Here, the robot
learns to grab a book placed on a shelf (Fig. 4D).

All the above mentioned environments are developed and
trained in MuJoCo. MuJoCo provides accurate collision and
position data, which is used to model our state and reward
function. The training is carried out by executing compound
actions provided by the actor, in MuJoCo and observing
the obtained states and rewards. Collision is checked using
internal functions in MuJoCo. The stability of the robot is
checked using the relative position of center of mass (COM)
of the robot with the ground level. Episode is terminated
whenever stability check fails.

B. State and Action vectors
For all the environments mentioned above, state vector

s consists of joint angles of upper body of humanoid, 3D
coordinates of end effectors of both hands, 3D coordinates
of goal positions and flags pertaining to stability, collision
and task completion. In addition to these, state vector may
have extra information, depending upon obstacle settings.

In this paper, we deal with two types of obstacle settings.
Firstly, for obstacles whose position and size vary randomly
(Environment 2), we include position and size of obstacles
into the state vector s. Here, the number of obstacles is kept
constant. Position and size of obstacles are randomly sam-
pled in each episode and the robot is trained to reach the goal
avoiding collisions with the obstacle along with maintaining
stability. Secondly, we have considered the environment to
be constant throughout where the obstacles are large static
objects like shelf or table (Environment 3, 4). In this setting,
the obstacle data need not be included in the state vector as
it is constant.

Compound action vector a is concatenation of three action
vectors ar, al and asp, where ar are the angular velocities
of right arm joints, al are the angular velocities of left
arm joints and asp are the angular velocities of spine joints
(shared actions). From Theorem 2, it can be inferred that
adi = ai − as and here we have ad1 = ar, ad2 = al and
as = asp. Therefore we consider two actions a1 = ar ∪ asp
and a2 = al ∪ asp with the corresponding reward functions
r1 and r2. While training as well as testing we use the
compound action a (= a1∪a2), to provide angular velocities
to all the active joints (upper body) of robot.

C. Reward Function Modelling
In order to apply DiGrad for cluttered environments, we

have to take into account collision avoidance along with goal
reachability. Further, we should ensure that both hands reach
the goal positions simultaneously. Based on all these criteria
we modelled the reward function as follows:

ri = −αdisti +

−n1 if (cols)

−n2 if (instb)

+m1 if (gbi)

+m2 if (goali)

(7)

where cols, instb, gbi, goali are flags referring to colli-
sion, instability, goal boundary and goal respectively and
n1, n2,m1,m2 are positive constants.

In order to ensure that both hands reach the end goal
position simultaneously, as needed for the coordinated tasks,
we have taken the above reward function for each arm of
humanoid and a very large positive reward κ is given when
both hands reach their goals simultaneously, encouraging the
robot to learn coordinated goal reachability. Hence,

r1 = κ, r2 = κ if (goal1 and goal2) (8)

With this definition of reward function, we move on
to next subsection where network architectures and hyper-
parameters used for training are discussed.

D. Network Architecture and Training

1) Network Architecture: In all the experiments, agents
are implemented in a TensorFlow codebase. Both actor and
critic networks consist of two fully connected hidden layers.
Hidden layers consists of 700 and 400 hidden units with
CReLu activation and a drop-out of 0.8. Batch normalization
is used in actor network across all layers, but in critic
network, it is used only in first layer. In critic network, L2
regularization of 0.01 is also used. The output layer has 13
outputs in actor with Tanh activation with and 2 outputs in
critic with no activation. For training, critic takes state s and
action vectors a as inputs and outputs 2 Q-values. Actor
network takes state vector as input and gives out required
angular velocities, a, for the 13 joints.

2) Training: For training, a learning rate of 0.0001 is
used for both actor and critic. Replay buffer size is set
as 45000 for all settings and a batch size is set to 64.
A discount factor to be 0.999 is used. Training for each
environment is run for at least 0.6 million steps and at
most 1.5 million steps depending on the setting. For the
environment without any obstacles, the training was run for
4000 episodes while for the remaining environments it was
run for 10000 episodes. In all cases, each episode runs for
150 steps. Episode is terminated whenever the robot loses
its balance or when goals are reached. In order to explore
the workspace, an exploration noise N needs to be added
to the action during training. In our case, we have taken
a decaying random normal noise as N . Once training is
complete, obtained solutions are tested without added noise.
The solutions obtained are collision free and stable, but
have oscillations due to the noise added during training.
These oscillations are removed in post processing which is
explained in next subsection.

E. Obtaining Joint Trajectories

Once the actor network learns the correlation between state
and actions, final configuration for grabbing the required
object is obtained in an iterative manner (in less than 150
iterations). Also, the robot do not collide or lose stability in
any one of these iterations, providing a set of stable collision
free way points. One can easily obtain trajectories (13
positional trajectories for 13 joints), by interpolating these

693

way points. However, linear interpolation will not provide
smooth trajectory profiles because of the oscillations induced
during training. Therefore, cubic smoothening splines [26]
(piecewise cubic functions that are continuous and have
continuous first and second order derivatives) are used in
order to reduce these oscillations.

For most of the cases, a smoothening factor of 0.2 yielded
smooth and collision free trajectories. In few cases, a con-
stant smoothening factor led to collision. In order to handle
such cases, a binary search is performed to find smoothening
factor for each joint that ensures collision free trajectory.
Joint trajectories thus obtained are followed using angular
velocity controllers and results are shown in a dynamic
simulation environment, MuJoCo.
Time Complexity: Since generation of way points involve
only forward passes in a neural network, the major con-
tributing factor is the time taken for calculating forward
kinematics (FK) during these passes. Fastest known method
calculates FK in O(log n) [27], where n is number of joints.
Time for post processing depends on the time taken to fit
smoothening splines through the way points generated. Best
known complexity for this, with m way points is O(m)
[28]. Hence, overall computation complexity of the proposed
methodology is O(m log n) and is appropriate for online
motion planning.

IV. EXPERIMENTS AND RESULTS

Our approach being model free has the advantage that
it does not require a model of the environment since it
learns the policy through its direct interactions with the real
environment. It is extremely difficult to learn the detailed
dynamics of complex systems like humanoids and hence, the
simulated world used in model based algorithms may not be
an exact replication of the real world. The approach that we
have presented here is therefore, simpler to implement and
updates will be faster as well as computationally cheaper
than using a model based strategy. Several experiments
are conducted to evaluate DiGrad and its robustness. After
that, results of the proposed methodology for learning dual
arm coordinated reachability in the aforementioned cluttered
environments are presented.

A. Digrad

The proposed framework DiGrad was tested in different
settings in order to analyse the advantages of each setting.
We considered four different network settings for DiGrad:
(1) Single critic network with heuristic
(2) Single critic network without heuristic
(3) Multi critic network with heuristic
(4) Multi critic network without heuristic.

Heuristic mentioned above refers to the heuristic of di-
rection presented in Corollary 1. We compare all of them
with a standard DDPG setting. We use the same set of hyper
parameters (Section III C) in all the five settings. The critic
network architecture is the same for both single and multiple
critic case in all aspects except in the number of outputs.
The actor network parameters are also the same for all the

cases. More details about network architecture can be found
in previous section. For all the experiments, we define error
and score for a particular task i as,

errori = ||Gi − Ei||, scorei = −log(errori)

where Gi and Ei are the coordinates of goal and end-effector
of the ith chain. We show the comparison of average reward
as well the mean scores of each task in all the plots.

1) Reward function: The reward function for DiGrad set-
tings is modelled keeping in mind the multi-task application.
As defined before, ri is the reward corresponding to the
action ai of the ith task. We give a small positive reward
to ri if task i is finished. Also, if all the end effectors reach
their respective goals, a positive reward is given to all the
tasks. For all other cases, a negative reward proportional to
the error is given. In DDPG setting, there is a single reward
unlike DiGrad. A positive reward is given when all the end
effectors reach their goals simultaneously. Else, a negative
reward is given proportional to the sum of error of all the
tasks, that is, sum of distances between the respective goal
and its corresponding end effector.

We test our framework on a 27 DOF humanoid robot [23]
shown in Fig. 1. This experiment involved reachability tasks
of the 2 hands of the humanoid robot using the upper body
(13 DOF) consisting of an articulated torso. The articulated
torso is the shared chain which is affecting both the tasks. It
is noteworthy that the articulated torso has 5 DOF whereas,
the arms have 4 DOF each. Thus, the contribution of shared
action (articulate torso) to the task is more than the non
shared actions (arms).

Fig. 2 summarizes the results for this case. We found that
DPPG is generally unstable for solving multi-tasks problems.
In some runs, it may learn initially but suffers degradation
later. We observe that the DiGrad algorithm yields better final
results while having greater stability.

From mean scores of tasks, we can see that single critic
frameworks converge faster and are stable throughout the
experiment as compared to the multi-critic frameworks.
The best setting is again the single critic with heuristic,
outperforming all the others in all the cases. Due to space
constraints, further evaluations of DiGrad are presented in
video. For learning dual arm coordinated reachability tasks,
we used single actor - single critic architecture along with
heuristic of direction. Results and simulations for the same
are presented in next subsection.

B. Dual Arm coordinated Reachability tasks

1) Training Results: The humanoid was trained using
DiGrad to learn dual arm coordinated reachability in four
different environmental setting mentioned in section III. The
training performance curves (average score vs episodes) for
all the environments are shown in Fig. 3. From these curves,
we can infer that the learning saturated at 4000 episodes for
all the environments and the robot was able to reach the goal
avoiding the obstacle in their respective environment.

694

Fig. 2: Performance curves of reachability task experiments on humanoid with articulated spine. The bold line shows the
average over 3 runs and the coloured areas show average standard deviation over the tasks. Note that, average reward curve
is not plotted for DDPG as the reward function for it is different from DiGrad frameworks.

(a) No obstacles (b) 3 sphere-shaped obstacles (c) Table (d) Shelf

Fig. 3: Figure shows the performance curves of the training in different environment settings. The network architecture
used here is single critic with heuristic. In all the graphs, the x-axis shows the number of training episodes. The bold line
represents the mean value of the score and the coloured area around it shows the standard deviation of the score.

Fig. 4: Humanoid robot performing reachability tasks in different environments (A) No obstacles (B) Random Obstacles
around the target position (C) Grabbing block from a table (D) Reaching out to a book located in a shelf

2) Trajectory Generation and Simulation Results: The
joint trajectories are generated by taking way points obtained
using DiGrad and then fitting smoothening splines. Fig.
1 shows these way points (blue dots) and corresponding
trajectories generated (red and green) in Cartesian space.
Although, smoothing has been performed on joint trajectories
of all 13 joints, it can be observed that trajectories in

coordinate space were also smoothed, showing correlation
between coordinate space and joint space. In our framework,
actor network learns this correlation by the end of training.

Fig. 4 shows the test results where the robot is trying to
grab an object with both the hands in all the environments
explained above. Each of these environments differ in the
way collision avoidance is learnt by the actor. In case

695

of dynamic obstacle environment (Fig. 4B), the obstacle
details are included in the state vector. Thus, the DiGrad
network computes the trajectories keeping in consideration
the obstacle position and size. In the case of Table and Shelf
environments, the network memorize the entire workspace
as the obstacles are constant. The trajectory generation in
these cases needs to be precise as the obstacles are closely
clustered near the goal object. It can be observed from all
cases in Fig. 4 that the articulated torso plays an important
role in performing reachability task as well as to main
stability.

V. CONCLUSIONS

In this paper, the problem of learning dual arm coordinated
tasks in humanoids with articulated torso was addressed. A
novel RL framework, DiGrad was proposed in the context
of manipulators with branched chains for learning collision
free configurations, required to accomplish the given task.
The way points (or intermediate configurations) to reach
the final configuration were calculated using DiGrad and
then joint trajectories were obtained by fitting smoothening
splines through them. This methodology was shown to have
a theoretical complexity of O(m logn) and hence is suitable
for online planning (n joints, m way points). DiGrad was
tested with different settings and a comparative analysis with
DDPG was presented. Finally, the proposed methodology
was implemented in four different environment settings and
simulation results were shown. However, few limitations to
our approach remain. Most notably, all results presented were
in the presence of static obstacles. The proposed method
also has limitations when it comes to precision. Therefore,
extending the proposed methodology for dynamic obstacle
scenario with good degree of precision provides a good scope
for future.

REFERENCES

[1] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V.
Dimarogonas, and D. Kragic, “Dual arm manipulation—a survey,”
Robotics and Autonomous systems, vol. 60, no. 10, pp. 1340–1353,
2012.

[2] D.-H. Kim, S.-J. Lim, D.-H. Lee, J. Y. Lee, and C.-S. Han, “A rrt-
based motion planning of dual-arm robot for (dis) assembly tasks,” in
Robotics (ISR), 2013 44th International Symposium on. IEEE, 2013,
pp. 1–6.

[3] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, “Efficient
prioritized inverse kinematic solutions for redundant manipulators,”
in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on. IEEE, 2005, pp. 3921–3926.

[4] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” Proceedings
of Robotics: Science and Systems IV, vol. 63, 2008.

[5] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant manip-
ulators,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on. IEEE, 2006, pp. 1874–1879.

[6] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, “Planning
collision-free reaching motions for interactive object manipulation and
grasping,” in ACM SIGGRAPH 2008 classes. ACM, 2008, p. 58.

[7] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, p. 2, 2010.

[8] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[9] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[10] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous grasp
and motion planning: Humanoid robot armar-iii,” IEEE Robotics &
Automation Magazine, vol. 19, no. 2, pp. 43–57, 2012.

[11] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dill-
mann, “Humanoid motion planning for dual-arm manipulation and re-
grasping tasks,” in Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on. IEEE, 2009, pp. 2464–2470.

[12] M. Gharbi, J. Cortés, and T. Siméon, “A sampling-based path planner
for dual-arm manipulation,” in Advanced Intelligent Mechatronics,
2008. AIM 2008. IEEE/ASME International Conference on. IEEE,
2008, pp. 383–388.

[13] T. Asfour, D. N. Ly, K. Regenstein, and R. Dillmann, “Coordinated
task execution for humanoid robots,” in The 9th International Sympo-
sium on Experimental Robotics (ISER 04. Citeseer, 2004.

[14] O. Ly and P.-Y. Oudeyer, “Acroban the humanoid: playful and com-
pliant physical child-robot interaction,” in ACM SIGGRAPH 2010
Emerging Technologies. ACM, 2010, p. 4.

[15] M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Fal-
her, and P.-Y. Oudeyer, “Poppy project: open-source fabrication of 3d
printed humanoid robot for science, education and art,” in Digital
Intelligence 2014, 2014, p. 6.

[16] R. F. Reinhart and J. J. Steil, “Reaching movement generation with
a recurrent neural network based on learning inverse kinematics for
the humanoid robot icub,” in Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on. IEEE, 2009, pp.
323–330.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[18] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in Proceedings of the third IEEE-RAS interna-
tional conference on humanoid robots, 2003, pp. 1–20.

[19] J. Morimoto, G. Cheng, C. G. Atkeson, and G. Zeglin, “A simple
reinforcement learning algorithm for biped walking,” in Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, vol. 3. IEEE, 2004, pp. 3030–3035.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[21] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy up-
dates,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 3389–3396.

[22] S. Phaniteja, P. Dewangan, P. Guhan, A. Sarkar, and K. M. Krishna,
“A deep reinforcement learning approach for dynamically stable
inverse kinematics of humanoid robots,” in Robotics and Biomimetics
(ROBIO), 2017 IEEE International Conference on. IEEE, 2017, pp.
1818–1823.

[23] D. Goel, S. P. Teja, P. Dewangan, S. V. Shah, A. Sarkar, and K. M.
Krishna, “Design and development of a humanoid with articulated
torso,” in Robotics and Automation for Humanitarian Applications
(RAHA), 2016 International Conference on. IEEE, 2016, pp. 1–5.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[25] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in ICML, 2014.

[26] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and
C. De Boor, A practical guide to splines. Springer-Verlag New York,
1978, vol. 27.

[27] R. Wakatabe, Y. Kuniyoshi, and G. Cheng, “O (logn) algorithm for
forward kinematics under asynchronous sensory input,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 2502–2507.

[28] M. Hutchinson, “Algorithm 642: A fast procedure for calculating mini-
mum cross-validation cubic smoothing splines,” ACM Transactions on
Mathematical Software (TOMS), vol. 12, no. 2, pp. 150–153, 1986.

696

