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Abstract— This paper proposes a novel biped stepping control
which does not depend on the time-defined trajectory. The up-
down motion of the foot is determined by referring to the
LIPM potential, which is defined in the paper, based on the
phase-space analysis of the center of mass (COM). The motion
rate of the COM relative to the Zero-Moment Point (ZMP) is
represented as the gradient of the potential, and the potential
monotonously decreases from positive to negative during one
step. The dominant component of the COM movement turns
from convergent mode to divergent mode at the zero potential,
and thus, the positive potential encourages the lifting-up and
the negative potential alerts the necessity of touch-down. This
emerges a stable alternate stepping of the feet by combining
with a self-exciting oscillation of the COM and the ZMP, which
was also proposed by one of the authors. The controller provides
robots with flexibility against disturbances since it does not
rely on any pre-defined referential motion trajectory. Computer
simulations show that this idea is valid for a bipedal foot
controller.

I. INTRODUCTION

Biped robots that locomote in real environments should
have high flexibility against various unpredictable events.
It is hardly achievable by a control scheme that relies on
time-driven referential trajectories, which is adopted in many
robots [1], [2], [3]. A challenge is how to synthesize the
whole-body motion ruled by a complex dynamics without
off-line computations.

The model predictive control is one of the promising
approaches since it can produce the optimal motion in real-
time with discontinuous change of the contact state taken
into account, and has been applied in many works [4], [5],
[6]. A drawback is that it is less robust against the mismatch
between the planned and the actual contact states. It is also
unpreferable that it requires a heavy computation. Other
methods presented so far include hybrid zero-dynamics [7],
passive dynamic walking [8], and nonlinear oscillators [9],
while they have difficulties in embedding intended locomo-
tion patterns other than straight walking into them.

Sugihara [10] proposed another control scheme for biped
robots. It is based on a simplified dynamics between the
center of mass (COM) and the Zero-Moment Point (ZMP)
[11], where the ZMP is handled as an indirect input [12].
A nonlinear feedback of the COM state to the desired ZMP
location emerges a stable limit cycle, in which the stepping
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period and stride are easily adjustable. The maximum stabil-
ity is secured by directly taking into account the unilateral
constraint on the reaction force, i.e., the constraint on the
ZMP within the supporting region. It has been enhanced to
the omnidirectional walking [13], emergent step-out [14] and
even jumping [15].

The idea of stepping control in the above is as follows.
When the COM converges to the stable limit cycle, the locus
of the ZMP is predictable based on the frequency response.
Hence, a foot stepping which is consistent with the stationary
oscillation can be achieved through the observation of the
ZMP - the robot starts to lift up the foot after the ZMP
comes into the pivot sole, and touches it down when the
ZMP is about to go out of the pivot sole. A problem found
in a later study is that the robot under the above control reacts
sensitively to perturbations, as explained in Section II. The
authors have concluded that it is inappropriate to define the
foot-lifting motion based on the location of the ZMP moving
in a narrow pivot sole.

This paper presents a novel biped stepping control. A
phase-space analysis of the COM suggests that the LIPM
potential, which is also defined in this paper, can be a
criterion to determine the referential velocity of the foot. The
motion rate of the COM relative to the ZMP is represented as
the gradient of the potential, and the potential monotonously
decreases from positive to negative during one step. The
dominant component of the COM movement turns from
convergent mode to divergent mode at the zero potential,
and thus, the positive potential encourages the lifting-up and
the negative potential alerts the necessity of touch-down.
This idea was implemented in computer simulations, which
showed that the robot stability against external perturbations
was upgraded.

II. BIPED STEPPING REFERRING TO ZMP
OSCILLATION AND ITS DRAWBACK

A. COM-ZMP Oscillator By Non-linear Feedback

This section explains the previous controller [10] to be
improved in this paper. The discussion goes based on the
COM-ZMP model [12]. Let us assign x-, y- and z-axes
along with the longitudinal, lateral and vertical directions,
respectively, as depicted in Fig. 1, and denote the locations
of the COM and the ZMP are defined by x =

[
x y z

]T
and xZ =

[
xZ yZ zZ

]T
, respectively. Suppose the inertial

torque about the COM of the robot is negligible and the
height of the COM z0 = z − zZ is almost constant for
simplicity, the following simplified equation of motion is
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Fig. 1. COM-ZMP model and definition of axes

obtained:

ẍ = ζ20 (x− xZ) (1)

ÿ = ζ20 (y − yZ) (2)

ζ0
def
=

√
g

z0
: const., (3)

where g = 9.8m/s2 is the acceleration due to the gravity.
An important constraint that the ZMP xZ lies within the
supporting region S is posed as

xZ ∈ S. (4)

The biped motion requires a combination of manipulation of
the ZMP within S and discontinuous deformation of S. Note
that Eqs. (1) and (2) are symmetric with respect to x and
y, so that only the motion in y-axis is considered hereafter
in this section. In order to emerge a stable biped stepping
motion, the ZMP should move alternately from one sole to
another, and the vertical foot motion should synchronize with
it, whereas the stability of the COM should be guaranteed.
The following feedback controller enables this requirement:

yZ =

 yZmax (S1 : ȳZmax < yZ)
ȳZ (S2 : yZmin ≤ ȳZ ≤ yZmax)
yZmin (S3 : ȳZ < yZmin)

(5)

ȳZ = dy + (qy + 1)

(
y − dy + f(γ)

ẏ

ζ0

)
(6)

f(γ)
def
= 1− ρ exp k

(
1− (qy + 1)2γ2

r2

)
(7)

γ
def
=

√
(y − dy)2 +

ẏ2

ζ20qy
, (8)

where dy is the referential position of the COM, and qy > 0,
r > 0 and k > 0 are control parameters. qy defines the
frequency of the oscillation. r is the nominal half distance
between the feet. Suppose the actual ZMP is manipulated to
follow the above desired ZMP without an error, the dynamics
of the COM is represented by a piecewise autonomous
system as

ÿ =

 ζ20y − ζ20yZmax (S1)
−ζ0(qy + 1)f(γ)ẏ − ζ20qy(y − dy) (S2)
ζ20y − ζ20yZmin (S3)

. (9)

Fig. 2. Phase portrait of the system represented by Eq. (9)

When ρ = 0, the controller is identical to the stability-
maximized COM-ZMP regulator [16] . The system with
ρ > e−1 has the following stable limit cycle in (S2), which
is

(y − dy)2 +
ẏ2

ζ20qy
=

{
1

(qy + 1)2
+ log ρ

}
r2. (10)

For ρ = 1, this is a harmonic oscillation with the amplitude
r/(qy+1) and the period 2π/ζ0

√
qy . Fig. 2 shows the phase

portrait of the system Eq. (9).

B. Phase-driven Stepping Control and its drawback

The frequency response from yZ to y tells that the ZMP
is synchronized with the COM oscillating on the harmonic
limit cycle, where the amplitude is r. This fact means that the
ZMP in the stationary state periodically reciprocates between
the both feet and its locus is predictable. Then, the up-down
motion of the foot can be determined by abstracting the phase
information from the ZMP oscillation as follows.

In order to avoid the problem of ZMP jumping, the phase
is defined by the following complex number:

pZ
def
=

(
yZ − dy

)
− (qy + 1)ẏ

ζ0
√
qy

i, (11)

where i is the imaginary unit. The real part is the position of
the ZMP. The imaginary part implies the time-derivative of
the ZMP movement, while the COM velocity is used instead
of the deviation of the ZMP since the trajectory of the ZMP
is not necessarily differentiable by time. Let us consider the
locus of pZ in Fig. 3. It is segmented at two points pLin
and pLout along a trajectory, the real parts of which are both
the inner edge of the left sole yLin during one step. The
right foot is liftable when pZ is in this segment. An idea
to control the right foot is to detach off the ground when
pZ = pLin and touch down when pZ = pLout. Although those
two points cannot be detected in advance, their estimates,
p̄Lin and p̄Lout, can be obtained if |pZ| > yLin as

p̄Lin = yLin − i
√
y2Z − y2Lin (12)

p̄Lout = yLin + i
√

y2Z − y2Lin. (13)

As the COM converges to the limit cycle, they also asymp-
totically converge to the actual pLin and pLout, respectively,
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Fig. 3. Estimation of the start and end values of pZ in foot-liftable phase

as depicted in Fig. 3. It is also noticed that the ZMP lies
within the left sole as long as pZ satisfies

0 < θL < 1 (14)

θL
def
=

∠(|pZ|/p̄Lin)
∠(p̄Lout/p̄Lin)

, (15)

where θL provides the phase information for the foot-lifting
since it increases from 0 to 1 during the step. If and only
if |pZ| > yLin is satisfied, the referential height of the right
foot dzFR is defined, for example, as

dzFR =
1

2

h|pZ|
r

σ(ρ)(1− cos 2πθL) (16)

σ(ρ)
def
=


1 (ρ > 1)
ρ− e−1

1− e−1
(e−1 ≤ ρ ≤ 1)

0 (0 ≤ ρ ≤ e−1)

, (17)

where h is the nominal lifting height. Otherwise, dzFR =
0. The maximum lifting height depends on |pZ|/r, which
measures the degree of convergence to the limit cycle.
Concerning with the horizontal movement of the lifting foot,
the referential position dxFR and dyFR are provided based
on the capturability [17] as[

dxFR
dyFR

]T
= sat(

[
xICP yICP

]T
,FR), (18)

where sat(
[
xICP yICP

]T
,FR) is a function that returns

the proximity of
[
xICP yICP

]T
to a 2-dimensional region

FR, FR is the nominal reachable range of the right foot, and

xICP
def
= x+

ẋ

ζ0
(19)

yICP
def
= y +

ẏ

ζ0
. (20)

The above
[
dxFR

dyFR
]T

is determined such that the COM
regains the stability as soon as the foot lands on the ground,
and the saturation within the reachable range prevents the
robot from excess step-out and self-collision.

In the actual robot controller, the desired position of the
ZMP defined by Eq. (5) is converted to the equivalent COM
position with a disturbance observer, and the referential

Fig. 4. The LIPM potential in phase space

movement of the lifting foot is determined from Eqs. (16)
and (18). The robot foot follows the referential position by
a PD controller as

ẍFR = −Kp(xFR − dxFR)−KdẋFR, (21)

where xFR =
[
xFR yFR zFR

]T
, dxFR =[

dxFR
dyFR

dzFR
]T

, Kp and Kd are the position
of the right foot, the referential position of the stepping
foot and the gain matrices, respectively. The acceleration of
the left foot ẍFL is also defined in a symmetric way. They
are converted to the whole joint displacements through the
inverse kinematics, and the joints are controlled to track
them.

The above idea works under certain magnitude of dis-
turbances. However, when the robot is strongly pushed, the
ZMP reaches the inner edge of the pivot sole earlier than the
regular situation. In such situations, the robot prefers to land
on the ground rather than to largely step out due to the above
phase-driven control, which decreases the stability. This
behavior is caused since the vertical foot motion depends
on the relative position of the ZMP in a narrow pivot sole
and even a small deviation of the ZMP largely influences the
lifting height. Hence, another reference to determine the foot
motion than the above ZMP-based phase should be found.
The author’s idea for the new reference is the LIPM potential,
which is explained in the next section.

III. THE LIPM POTENTIAL AND BIPED STEPPING
CONTROL

A. The LIPM Potential

Let us define the dimensionless position of the COM, time
as

r̃ =
[
x̃ ỹ z̃

]T def
=

[
x− x̄Z

z − z̄Z

y − ȳZ
z − z̄Z

1

]T
(22)

t̃ = ζ0t, (23)

where x̄Z =
[
x̄Z ȳZ z̄Z

]T
is the constant point which

instantaneously coincides with xZ, i.e., ˙̄xZ = 0. Then,
Eq. (2) is expressed in a dimensionless form as:

d2ỹ

dt̃2
= ỹ. (24)

Eq. (24) is transformed into decoupled linear systems as
pointed out in many previous works [18], [19], [20] as
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Fig. 5. The development of the LIPM potential along horizontal trajectries,
(Initial position and velocity norm is

[
x y z

]T
=[

0.1 0.1 0.2
]T

m and 1.2m/s, respectively.)

d

dt̃

[
w̃1

w̃2

]
=

[
1 0
0 −1

] [
w̃1

w̃2

]
(25)[

w̃1

w̃2

]
def
=

1√
2

[
1 1
1 −1

] [ ỹ
dỹ

dt̃

]
, (26)

where w̃1 and w̃2 correspond to normalized unstable and
stable modes of the system, respectively, which are abbre-
viated as DCM (for Divergent Component of Motion) and
CCM (for Convergent Component of Motion) in some papers
[20]. The combination of them is called the linear inverted
pendulum mode (LIPM) [19]. The system is also interpreted
as the following scalar potential field:

d

dt̃

[
w̃1

w̃2

]
= −

 ∂ϕ

∂w̃1
∂ϕ

∂w̃2

 , (27)

where

ϕ(w̃1, w̃2)
def
= −1

2

(
w̃2

1 − w̃2
2

)
(28)

or equivalently

ϕ(y, ẏ, ȳZ) = −ỹ
dỹ

dt̃
= − (y − ȳZ)ẏ

ζ0z20
, (29)

Let us call the above ϕ the LIPM potential. It is enhanced
to the 2-dimensional dynamics as

Φ(x, ẋ, x̄Z, y, ẏ, ȳZ)
def
= − (x− x̄Z)ẋ+ (y − ȳZ)ẏ

ζ0z20
. (30)

It is also interpreted as an inner-product Φ = −r̃T
dr̃

dt̃
.

Koolen et al. [21] notified that ẋ(x − x̄Z) < 0, the left-
hand side of which is similar to the above definition is ‘a
necessary condition for balance’. The LIPM potential does
not only make sense in its sign but quantifies the degree
of development of the COM motion on an equal energy
orbit, which decreases with the development of the COM
state. At the zero potential value, the COM motion switches
from the motion in which the stable mode is dominant to
that in which the unstable mode is. The relation between
horizontal motions and the LIPM potential is depicted in
Fig. 5. From these facts, it is conceivable that the LIPM

Fig. 6. Stepping strategy using the LIPM potential in a typical case

potential represents the landing urgency. The degree of
landing urgency increases as the LIPM potential decreases
to a negative value.

The unstable mode or DCM is often referred in order to
determine the landing position. The stable mode or CCM is
also informative in order to synchronize the foot lifting mo-
tion with the COM movement. The LIPM potential involves
the both modes, and thus, can be associated with the foot
control.

B. Stepping Control of Foot

The author’s idea is to design the foot dynamics by
referring to the LIPM potential. A typical case of stepping
while walking is depicted in Fig. 6. While the LIPM potential
decreases from a positive value to zero, the foot can leave
the ground and go up. The lifting height should be bounded
due to the kinematic limitation. When it decreases under
zero, the COM begins to diverge, so that the degree of
landing urgency increases and the foot should go down to
the ground. One concern is that the ground level is not
exactly provided. The idea is to remain a slightly downward
speed even around the estimated ground and expect that the
foot eventually touches down. The LIPM potential is also
informative for the horizontal movement. In the early phase
of stepping, the foot should be gradually accelerated for a
smooth reorientation toward the desired landing position. As
the degree of landing urgency increases, the convergence
of the foot motion should be prioritized. An excess stride
should also be suppressed. The above discussion suggests
that the desired foot motion can be described at the velocity
level. To summarize, the referential velocity of the lifting
foot dvF =

[
dvx

dvy
dvz

]T
should have the following

properties:

1) dvz has the same sign with Φ as long as the foot height
is under the nominal upper bound

2) dvz < 0 regardless of Φ, when the foot goes over the
nominal upper bound

3) dvx and dvy are proportional to the horizontal error
from the destination with respect to the fixed Φ

4) Φ > 0 suppresses the gain of dvx and dvy
5) Φ < 0 magnifies the gain of dvx and dvy
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Fig. 7. Reference velocity of the lifting foot in vertical direction dvz(zF−
h, Φ) (a = 0.1, vmax = 1)

6) the gain of dvx and dvy are increased when the foot
goes beyond the destination

7) dvx and dvx are bounded
The following design of the referential velocity conforms to
the above criteria:

dvz((zF − h), Φ) = vmax(2α(β(a(zF − h), Φ))− 1) (31)
dvx(xF − dxF, Φ) = kpx(α(bΦ)(1− c) + c)(dxF − xF)

(32)
dvy(yF − dyF, Φ) = kpy(α(bΦ)(1− c) + c)(dyF − yF)

(33)

α(x) =
1

1 + e−x
(34)

β(x, y) = −(x− y)− |x+ y|, (35)

where xF =
[
xF yF zF

]T
is the position of the lifting

foot, vmax is the maximum velocity, kpx, kpy , a, b and c
are parameters to be tuned, and h is the upper bound of the
lifting height. The foot is controlled so as to follow dvF by

ẍF = −KD(ẋF − dvF). (36)

Eq. (31) is visualized in Fig. 7. In the region where Φ > 0
and zF−h < 0, the foot is encouraged to move upward since
the landing urgency is low and the foot height is still under
the nominal upper bound. On the other hand, when Φ < 0
and zF−h < 0, the foot moves downward since the landing
urgency is high. When zF − h > 0, it prevents lifting foot
from further lifting-up over the upper bound. Regarding the
horizontal motion, Eq. (32) is visualized in Fig. 8. When
Φ > 0, rather a mild movement is preferred since the
landing urgency is low. When Φ < 0, the referential velocity
increases since it needs to catch up the desired landing
position to avoid falling down. The desired landing position
is determined by Eq. (18). The pivot foot switches when
ZMP moves into the other sole. The oscillation controller
defined by Eq. (5) gets the ZMP into the sole of the landed
foot, so that the pivot foot is naturally alternated.

IV. SIMULATION
Simulations were conducted in order to validate the pro-

posed stepping controller. The humanoid robot “mighty” [22]
was supposed in the simulations. An approximate model in
which the total mass concentrates on the COM and the real
ZMP coincides with the desired ZMP without delay was
assumed for simplicity. The referential joint displacements

Fig. 8. Reference velocity of the lifting foot in horizontal direction
dvx(xF − dxF, Φ) (b = 10, c = 0.1, kpx = 0.1)

were obtained by solving the inverse kinematics from the de-
sired feet positions and the desired COM position computed
from the desired ZMP. The maximum foot height was set
for 0.025m and the desired COM height was set for 0.26m.
The discrete interval of the simulations was 0.01s.

In the simulation, external forces were applied to the COM
in the lateral direction from the supporting foot towards
the opposite one. This simulation was conducted to check
the robustness of the proposed controller against perturba-
tions during stepping. Fig. 9 shows some snapshots of the
simulation from 2.50s to 2.90s. The loci of the feet, the
COM and the ZMP are drawn in Fig. 10. It is seen that the
robot achieved alternate stepping successfully regardless of
the exertion of the external forces. The robot stepped out
naturally when perturbed and succeeded to avoid falling.

For comparison, the resulted loci of the COM, the ZMP
and feet with the previous method [10] were plotted in
Fig. 11. The stepping foot landed soon after the perturbation
with rather a small step width with the previous method.
When the perturbation was applied 0.01s longer, the robot
controlled by the previous method failed to absorb the
perturbation and fell down, while it successfully avoided
falling when controlled by the proposed method. It typically
presents the efficacy of the proposed controller over the
previous behavior. Though it is possible to improve the
lateral response of the foot by increasing the horizontal gain
and decreasing the vertical gain, such a choice may degrade
the synchronicity of the foot to the COM movement. Namely,
the movement obtained by the proposed controller is hardly
emerged by the previous method even with finely tuned
gains.

V. CONCLUSIONS

A novel foot stepping controller for biped robots was
proposed. The LIPM potential was newly defined as the
measure of the degree of development of the COM mo-
tion and that of landing urgency. It suggests criteria of
a preferable foot movement at the velocity level. Stable
alternating stepping motion was achieved by combining
with the COM-ZMP oscillator, and flexible step-out motions
were naturally emerged against perturbations. The vertical
referential velocity is designed to remain downward in order
to land on unknown ground level. A shock absorption and
terrain-adapting control is additionally required in practice,
which is a future work. While a basic stepping control is
addressed in this paper, the authors believe that the proposed
method supports the fundamental stabilization and mobility
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Fig. 9. Snapshots of a simulation of an alternating stepping control during which perturbations were applied

Fig. 10. Loci of the COM, the ZMP and feet when external forces applied
with the proposed method

Fig. 11. Loci of the COM, the ZMP and feet when external forces applied
with the previous method [10]

of the robot, on which all abilities to execute higher tasks
stand.
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