
Target Walking Speed Generation and Parameters Identification by
Feedback Control of 1-DOF Limit Cycle Walker

Qingqing Wei1,Xuan Xiao2, Qingliang Meng2 and Fumihiko Asano3

Abstract— This paper studies a model-based feedback con-
troller which can generate limit cycle walking at target walking
speed, and identify the physical parameters through neural
network. First, a combined rimless wheel is developed, and the
feedback control is proposed by dynamic planning its equation
of motion. Second, the numerical simulations are conducted to
analyse walking speed and other properties when the physical
parameters are assumed unknown and the prediction parame-
ters are used instead. The controller has a certain adaptability
to the prediction error, and the target walking speed can be
generated with little error (0.001%). Finally, based on the
model-based properties of the control, the physical parameters
can be predicted through a proposed neural network model with
an average error of 2%. In general, the model-based feedback
controller provides us a new approach for simultaneously
controlling walking speed and identifying physical parameters.

I. INTRODUCTION

As the extension of “Passive Dynamic Walking” [1], the
paradigm of “Limit cycle walking” was proposed to make
the walker obtain the stable periodic walking without locally
stabilizing the walking motion at every instant during gait
cycle. Utilizing their own physical dynamics and passivity,
limit cycle walkers have advantages in generating natural
and energy-efficient dynamic gaits, but thus far they have not
been as versatile [2][3]. As an aspect of versatility, accurately
generating a target walking speed is a challenge for limit
cycle walkers because of the irreversibility of time and space.
Therefore, an overall planning for a discrete time period and
a space segment in one step is the essential of the target
speed controlling for walkers.

Several approaches to accurately control the walking speed
have been proposed. Hobbelen studied how walking speed
could be varied, which way was energetically beneficial and
how walking speed affected a walker’s ability to handle dis-
turbances in limit cycle walking [4][5]. Kajita et al. proposed
a method by changing the foothold of a biped walker to
modify the initial condition of the support phase to control
the walking speed based on a PD feedback controller [6]. In
addition, Juang et. al. proposed a learning scheme which
trained the neuro-fuzzy controller to follow the designed
trajectory as closely as possible for generating walking gaits
at a certain speed [7]. Focusing on the convergence gaits
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of limit cycle walking, Xiao et. al. proposed a model-based
control to keep target walking speeds when handling the
disturbance.

As the property of model-based controller, however, its
performance generally depends on all the physical model
parameters. Thus a vary of parameter identification methods
[8][9] to predict the parameters in advance becomes a solu-
tion, and proposing the robust controller which can handle
the prediction error is another option. Since the prediction
parameter error directly reflects on the performance of walk-
ers, conversely, the performance of model-based controller
can help us to predict the physical parameters. In other
words, the controller performance and the prediction physical
parameters are promising to optimize each other during
walking.

The discrete dynamics progress of walking makes mathe-
matical analysis a great challenging work, and thus some
data-driven methods are considered as solutions. Neural
Networks are computing systems inspired by the biological
neural networks that constitute animal brains. They are com-
mon tools of controlling and parameter identification which
can catch hidden and strongly non-linear dependencies, even
when there is a significant noise in the training set. In this
paper, a model-based feedback controller is proposed to
generate limit cycle walking at target speeds, and the physical
parameters are predicted based on the walking performance
through neural networks during walking. As the contribution,
this study provides a new approach to reduce the dependence
of model-based controllers on the physical parameters when
the walker is generating target states.

II. ACTIVE COMBINED RIMLESS WHEEL

A. Modeling

Fig.1 shows the model of a planar active combined rimless
wheel (CRW). It consists of two eight-legged rimless wheels

Fig. 1: A planar active combined rimless wheel
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(RWs) combined by a body frame. A motor on the frame
exerts a joint torque, u, between the rear stance-leg and the
body frame. We assume the following statements.

• The fore and rear stance legs always contact with the
ground without sliding.

• The inertia moments about the CoMs of all the frames
can be neglected.

• The fore and rear RWs perfectly synchronize or rotate
maintaining the relation θ1 ≡ θ2.

In the CRW, the steady walking speed can be calculated
by ratio between the step period and step length. Therefore,
the target steady walking speed state can be generated by
controlling the step period due to the constant step length.

B. Equation of Motion and Its Linearization

A four-bar linkage is configured by the body frame, the
two stance legs and the ground surface. Exerting the joint
torque is thus equivalent to exerting the ankle-joint torque.
In addition, the torque of the joint viscosity, fv = −kvθ̇ is
also taken into consideration. Thus, the dynamics of the rear
RW then becomes identical to that of an active RW with an
ankle-joint torque and viscosity friction, that is,

θ̈ = ω2 sin θ +
u

Ml2
− kvθ̇

Ml2
(1)

where M := mb + 2m [kg] is the total mass of the CRW,
θ(= θ1 = θ2) is the stance-leg angle, and ω :=

√
g/l

[rad/s]. By linearizing θ ≈ sin θ around 0 [10], the state-
space realization of the RW dynamics becomes

d
dt

[
θ

θ̇

]
=

[
0 1

ω2 −k̂v

] [
θ

θ̇

]
+

[
0

1/Ml2

]
u (2)

Where k̂v = kv/Ml2. Thus we denote Eq. (2) as

ẋ = Ax+Bu. (3)

It should be clear that Eq. (2) is only used for the control
system designing. All the simulations are conducted through
the kinetic equation in Eq. (1). Obviously, when the control
system is designed based on Eq. (1), the generated walking
state in the simulation can not completely meet the expected
results due to the linearization in Eq. (2). According to the
results of follow sections, the errors are acceptable and can
be eliminated.

C. Collision Equation

We define the state vector immediately before the (i)th
impact as x−

i and the state vector immediately after the (i)th
impact as x+

i . In the collision phase we assume that the
rear leg frame at impact (the previous stance leg) begins to
leave the ground immediately after the landing of the fore leg
frame (the next stance leg) according to the law of inelastic
collision. Thus based on the research of Coleman [3], the
transition equation for the angular velocity becomes

θ̇+i = µθ̇−i , (4)

where

µ =
Ic +Ml2 cosα

Ic +Ml2
,

and Ic is the inertia moments of the CRW. Considering
inertia moments are neglected in this paper (Ic = 0), µ is
simplified as µ = cosα.

In addition, when the CRW walks on the level ground, the
initial and terminal angular positions are ∓α

2
. The transition

equation for angular position is also determined as

θ+i = −θ−i = −α

2
.

D. Control System

In the control system, the torque is dynamically updated
based on current time and state. The moment immediately
after impact is defined as 0 [s] and the time parameter will
be reset immediately after every impact. The torque must
supply enough kinetic energy to make the CRW overcome
the potential barrier. In addition, if the walking speed is so
fast that the control cannot be completed before the next
impact, the target walking speed cannot be guaranteed.

III. CONTROL LAW

Control law is proposed based on the constant torque
controller. Instead of designing a specified position trajectory,
the motor is made to follow the desired constant-torque
strategy. In detail, when the disturbance happens, the walker
can propose a new planning according to the current state and
the target one. By updating the control planning for the rest
time, the disturbance can be handled and the target walking
states can be guaranteed. The principle of model-based
feedback control is common in our daily life, especially in
mapping. The detail of the feedback control is introduced as
follows.

A. Terminal Boundary Condition Prediction

Based on Eq. (2), the dynamic equation of RW has been
proposed. Thus as the solution of differential equation ẋ =
Ax+Bu, the state vector immediately before the (i+1)th
impact, x−

i+1, is written by the state vector immediately after
the (i)th impact, x+

i , as [11]

x−
i+1 = eATix+

i +

∫ T−
i

0+
eA(Ti−s)Bui(s) ds. (5)

Similarly, the state vector at t [s], xi(t) can be written by
the time t and the initial state vector xi(0) as

xi(t) =

[
θi(t)

θ̇i(t)

]
= eAtxi(0) +

∫ t

0+
eA(t−s)Bui(s) ds.

(6)
Therefore, based on the Eq. (6), at t [s] we assume to

keep a constant control input ui(t) for the rest T ∗
s − t [s] to

generate the terminal condition xi(Ti) as follows [12].

xi(Ti) = eA(Ti−t)

(
xi(t) +

∫ Ti−t

0+
e−AsBui(t) ds

)
(7)
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By expanding Eq. (7), the terminal angular position
θi(Ti) =

α

2
can be derived by t and ui(t) in detail, and thus

the equation of angular position is simplified for designing
the controller as follows [13].

ui(t)(F1 − ekr)

ekrλ
+

θi(t)F1 + 2θ̇i(t) sinh

(
Trke
2

)
ekr

=
α

2
(8)

Where ke =

√
k̂v

2
+ 4ω2, kr =

1

2
Trk̂v, Tr = T ∗

s − t, λ =

l2Mω2 and

F1 = ke cosh

(
Trke
2

)
+ k̂v sinh

(
Trke
2

)
. (9)

As a result, after the analysis of the equation of angular
position above, ui(t) is derived for generating the target step
period state, Ti = T ∗

s , as

ui(t) = λ

αkee
kr − 4θ̇i(t) sinh

(
Trke
2

)
− 2θi(t)F1

−2keekr + 2F1
, (10)

Even though the control law has been proposed, there are
still some details to be solved. However,

lim
Tr→0

2F1 − 2kee
kr ≈ 0,

and a system error will be caused in Eq. (10). Here, a simple
solution is proposed:

• When Tr < 0.001 [s], we set ui(t) = 0.
In addition, the physical parameter of viscosity friction
kv, however, usually cannot be obtained accurately, which
obviously affects the performance of controller. The other pa-
rameters, M and l are also assumed as unknown parameters.
Therefore, when the input torque is calculated in Eq. (10),
M and l and kv are all replaced by the prediction parameters
of Mp and lp and kvp in some reasonable range instead. As a
result, the flow chart of the feedback control is illustrated as
Fig. 2. If the CRW can feedback the walking state constantly,
and thus the control system calculates a new control input
ui(t) based on the current time t and the walking state
xi(t) by Eq. (10) constantly, a target walking speed can
be generated and the ability of disturbance handling can be
improved. In addition, the model-based control updates the

Fig. 2: Flow chart of the control law

TABLE I: Physical parameters

m/[kg] l/[m] kv
1.0 1.0 0.5

TABLE II: Prediction parameters of simulation

Prediction parameter Set 1 Set 2
mp/[kg] 1.0 1.2
lp/[m] 1.0 1.2
kvp 0.5 1.0

control torque dynamically, and thus it is difficult to analyse
the trajectory in each step in advance. The proof of stability
of our feedback control is left as a future work.

To test the performance of our controller, the numerical
simulations were conducted under prediction parameters. The
RW was made to walk at the target speed of 0.4 [s] per step.
2 particular sets of prediction parameters were selected: one
set was exactly equal to the real physical parameters, and the
other one was larger. In detail, the real physical parameters
and the two sets of prediction parameters were listed in Table
I and Table II.

As a result, the simulations were conducted and the gait
properties were recorded. The target walking speed were
guaranteed under two sets of prediction parameters, and
the target step period gait was generated with little error
(0.001%) during all the steps. In addition, Figs. 3 and
4 illustrated the evolutions of control torque. When the
prediction parameters were exactly equal to the physical
parameters, the control torque in each step had some small
fluctuations caused by the linearization in Eq. (2). On the
contrary, the control torque significantly changed to handle
the disturbance caused by the inaccurate model. When the
rest time were close to 0, the torque increase or decrease
drastically. Another interesting property was illustrated in
Figs. 5 and 6, the Poincare Map of both cases. The simulation
with larger prediction error had a faster convergence speed
which could be explained by the deceleration effect [11].

Furthermore, 40 simulations under different sets of pre-
diction parameters were conducted for testing the boundary
conditions. In each simulation, the walker was driven by
our feedback control to walk 40 steps at the target walking

Fig. 3: Time-evolution of control input under the prediction
parameters of Set 1
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speed (0.4[s] per step) by using a set of random prediction
parameters. The real parameters were same as Table I and the
prediction parameters were picked randomly in the sufficient
ranges from Table III. When the walking time error was
larger than 0.1% (totally ± 0.016[s]), the simulation would
be marked as a failure. Through analysing the prediction
parameters in the failure cases, a rough range of prediction
parameters would be discovered.

As a result, the distribution of the simulations was illus-
trated in Fig. 7. The pink star point meant the real physical
parameters, and three failure cases were found as the red
points cases. It turned out that both prediction parameters
of m and l are relatively lower than the real ones could
cause failure cases. If the initial angular velocity of one
step was very fast, however, the controller would incorrectly
design the walking trajectory and make the planning angular
velocity immediately before impact a negative value, and
caused a failure case. Therefore, qualitatively speaking, when
the physical parameters were unclear, setting a positive
prediction error in the reasonable range would be a good
choice.

As a conclusion, three properties of our feedback control
were concluded as follows.

• The feedback control had a certain adaptability to
keep the target speed when the a vary of prediction
parameters were close to the real physical ones. Relative
large prediction error would be preferred.

• The fluctuations of torque were caused by both lin-
earization and prediction error. Even if the prediction
parameters were exactly equal to the physical ones,
small fluctuations were also caused by the linearization.
A large prediction error caused rapid change of the
torque.

• The prediction parameters could affect some gait prop-
erties, such as convergence speed and energy-efficiency.

Fig. 4: Time-evolution of control input under the prediction
parameters of Set 2

TABLE III: Pattern information

Prediction parameter Random range
mp/[kg] [0.8,1.3]
lp/[m] [0.8,1.3]
kvp [0.0,2.0]

Fig. 5: Poincare Map under prediction parameters of Set 1

Fig. 6: Poincare Map under prediction parameters of Set 2

IV. PARAMETERS IDENTIFICATION BASED ON
NEURAL NETWORK

Based on the analysis of the numerical simulation under
37 sets of random prediction parameters in Fig. 7, the torque
trajectory of each case depends on the prediction parameters
change. There is a relationship in the non-linear dynamic
system, but it’s a great challenge to extract the rules through
mathematical methods, and thus the data-driven methods
becomes an option.

Artifitial Neural Networks (ANNs) are computing systems
inspired by the biological neural networks. An ANN con-
sists of basic processing units, the neurons, and weighted
connections between these neurons. By building the training
sets from the plenty of simulation results, the prediction

Fig. 7: The distribution of the 40 sets of random prediction
parameters
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Fig. 8: The method of predicting physical parameters through
the trajectory of u(θ) in one step

Fig. 9: The architecture of the neural network and the training
parameters

model of the physical parameters can be proposed. Thus the
physical parameters can be predicted precisely, and then basis
of prediction parameters will help to optimize the control
input.

A. Neural Networks Training

The training sets must be built to reflect the relationship
between performance of controller and the prediction error.
According to the control strategy, the flat torque trajectory
in each step demonstrates small prediction error. However,
the performance error was caused by both the linearization
and the prediction error. Therefore, lim

θ→0
θ ≈ sin θ is taken

into consideration to exclude the influences of the error of
linearization. As shown in Fig. 8, when −0.05 ≤ θ ≤ 0.05,
the trajectory of θ evolution of control input should be
approximately an unknown constant value (which means
u̇(θ) = 0) if there is no prediction error, otherwise the
performance error totally comes from the prediction error.
Thus the physical parameters can be predicted according to
these extracted trajectories of u̇(θ) in simulations.

The Levenberg-Marquardt algorithm was used for training
ANN. All functions were available in the neural networks
toolbox of Matlab. The architecture of the neural network
and the training parameters were shown in Fig. 9

As the result, the training sets were built as the flow chart
in Fig. 10. For every successful simulations, the trajectory of
θ evolution of u̇(θ) when −0.05 ≤ θ ≤ 0.05 was extracted.
Then the trajectory was fitted by quadratic curve fitting,
and the parameters of quadratic curve were recorded as the

Fig. 10: Flow chart of building training sets

training set with the random prediction parameters. Thus
the physical parameters could be predicted through setting
a = b = c = 0 (the trajectory u̇(θ) = 0).

As a result, the training dataset consists of 37 training
patterns (xj , tj), where j is the index number. The input
vector and output vector are shown below

xj = [aj , bj , cj ] ∈ R3,

tj = [mj , lj , kj ] ∈ R3.

The procedure used for designing the neural network for
identification can be summarized as follows:

1) Conduct the simulations under 37 sets of random
physical parameters [m, l, k] around the certain range.

2) In each simulation, the trajectory of θ evolution of
u̇(θ) when −0.05 ≤ θ ≤ 0.05 was extracted and
fitted by quadratic curve fitting to obtain the coefficient
parameters [a, b, c].

3) Build the entire training set. The curve-fitting parame-
ters [a, b, c] were assigned as input, while the physical
parameters [m, l, k] were assigned as output of the
neural network.

4) Train and build the neural network, calculate the solu-
tion of a = b = c = 0 as the prediction parameters.

Through this method, the prediction error was greatly re-
duced, however, the error could not reach 0 because the in-
fluences of linearization could not be completely eliminated.

The real value, prediction and relative error of the physical
parameters were shown in Table IV. The performances of
ANN were illustrated in Figs. 11 and 12. As a result, the
torque curve under the predicted physical parameters are
illustrated in Fig. 13. Several ANNs were built based on
the same training sets, and the average error of prediction
was about 2%.
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Fig. 11: The performance of proposed ANN

Fig. 12: The linear regression plot on training validation and
test sets

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the model-based feedback
control to generate target walking speed and identify the
physical parameters on a limit cycle walker, thus provided
us a novel strategy of model-based controller optimization.
The CRW was proposed and its dynamic equation of motion
was derived. Thus the feedback control of walking speed
was developed through the dynamic torque planning. The
ability of tolerating prediction error was tested on numerical
simulations by using a vary of prediction parameters. As a
result, the controller was proved to have a certain adaptability
to the prediction error, and the target walking speed could be
guaranteed with little error (0.001%). In addition, the neural
network parameter identification model was also proposed
with the error of 2% based on the walker performance.

The ability of error toleration will be further tested as the
future work. In addition, the controller will be extended to
some other walkers with multiple DoFs.

Fig. 13: Torque input of simulation under the predicted
parameters

TABLE IV: Predicted parameters through ANN

Parameter Physical Predicted Prediction error
m/[kg] 1.0 0.9990 0.1%
l/[m] 1.0 0.9711 2.89%
kv 0.5 0.4984 0.32%
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