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Abstract—We propose a tool-use model that can
select tools that require neither labeling nor modeling
of the environment and actions. With this model, a
robot can choose a tool by itself and perform the
operation that matches a human command and the
environmental situation. To realize this, we use deep
learning to train sensory motor data recorded during
tool selection and tool use as experienced by a robot.
The experience includes two types of selection, namely
according to function and according to size, thereby
allowing the robot to handle both situations. For
evaluation, the robot is required to generate motion
either in an untrained situation or using an untrained
tool. We confirm that the robot can choose and use a
tool that is suitable for achieving the target task.

I. Introduction

Aging societies constitute a major problem nowadays,
one that is expected to be solved in part by using robots
to help with daily tasks [1] [2]. The space encountered
during daily living is a complex environment in which
robots are required to perform various tasks. If robots
could use tools like people do, their ability to execute
tasks and adapt to their environment would improve sub-
stantially. Therefore, much research has been conducted
on tool-use by robots. However, in most of that research,
the tools to be used, the objects to be manipulated, and
the actions to be performed were labeled in advance. For
example, Stoytchev et al. [3] labeled tools with colors,
Tikhanoff et al. [4] labeled tools with the sounds of their
names, and Dehban et al. [5] categorized motion by type.
Of the studies that did not require labeling in advance,
most did not consider both selecting a tool and grasping
it. For example, Nishide et al. [6] and Mar et al. [7]
focused on learning the features of tools, but the robot
was required to grasp a tool in advance before using it.
Takahashi et al. [8] focused on where to grip the tools, but
there was only one tool set in front of the robot and the
robot did not need to consider tool selection. Therefore,
there are two problems, namely (i) robots are hampered
when using and operating unlabeled objects and tools
or conducting unlabeled motions, and (ii) it is difficult
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for robots to perform a series of operations from tool
selection to task execution by themselves with only one
model.
　To solve these problems, the present research proposes
a tool-use model that does not require labeling and
considers end-to-end sequential task execution from tool
selection to operation. When a person chooses one tool
from several, there are usually two ways of doing so. The
first way is to select a tool whose function meets the
purpose, and the second way is to select a tool of the
appropriate length or size. As an example, consider the
case in which a large hammer, a small hammer, and a saw
are on offer and one must be selected. If we want to drive
in a nail, we choose one of the hammers instead of the
saw based on function. If we want to drive the nail into a
hard material, we choose the large hammer instead of the
small one. Herein, we build a model that allows a robot
to consider both situations, namely to choose and use a
tool whose function and size both match the target.
　 The present paper is organized as follows. Section I
I describes the method of constructing the proposed
tool-use model. Section III presents the experimental
setup, Section IV presents the experimental results, and
Section V discusses them. Finally, Section VI concludes
the paper.

II. Tool-use Model

In this section, we describe the present research
methodology and how to construct the tool-use model,
which can perform a series of operations from tool se-
lection to task execution. This is based on a study by
Takahashi et al. [8]. We begin by guiding a robot to
experience selecting some tools and using them to operate
on an object. During the experience, we record sensory
motor data that include information about the robot’s
body diagram and the relationships among its body, the
tools, and the objects. In the present research, the sensory
data are motor angles and images from a camera. The
motor data include information about the physical move-
ment of the arm, and the visual data include feedback
information about how the object moves according to
its own movement and the tools used. Then, by learning
all the data simultaneously, the robot can recognize tool
features from the relationships. For example, the robot
will associate a rake-shaped tool feature with pulling an
object and a stick-shaped tool feature with sliding an
object. As for tool length, longer tools have features that
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Fig. 1. Proposed model for tool selection and use, considering image
data, motor data and task command. First, the feature-extraction
module extracts the image features. Then, we integrate the image
features, initial image features, motor angle, and task commands.
Finally, the motion-generation module trains them to output the
data for the next step.

allow them to tackle objects that are farther away and
shorter tools have features that allow them to tackle
objects that are nearer. In addition, to select a proper
tool by itself, the robot must be able to understand what
its human operator is telling it to do. To realize this, we
issue a task command to the robot. Therefore, the robot
must also consider the relationship between the sensory
motor data and the task command. Finally, the model
generates motion and allows the robot to move properly
based on that relationship.

A. Overview of Proposed Model

Figure 1 shows an overview of the proposed learning
model. The model comprises a feature-extraction module
and a motion-generation module. The former module
compresses the number of dimensions, which for image
data is considerably larger than it is for other types of
data. Therefore, to learn all the data in good balance
and with low calculation cost, we use this module to
compress the image data. The motion-generation module
learns the relationship between the sensory motor data
and the task command and generates motion according
to that relationship. Simultaneously, the time series of
image features, initial image features, motor angle data,
and task command are integrated and learned with the
module. The reason for using the initial image features
is that by continuing to input information about the
initial image, we can prevent lack of information about
the environment even if the tool or object cannot be seen
because it is occluded by the robot arm. That is similar
to remembering what kinds of tools are set and where
the object is set. Levine et al. [9] also used this method
of providing initial image information to grasp an object
when equipped with only an RGB camera.

B. Feature-extraction Module

The feature-extraction module compresses the raw im-
age data and extracts low-dimensional image features.
For the module, we use a convolutional auto-encoder
(CAE) [10]. The CAE is a multi-layered neural network
that has convolutional layers and fully connected layers

and can be viewed as being a combination of a convo-
lutional neural network (CNN) [11] and an auto-encoder
(AE) [12]. Because CNNs have shown high performance
in the field of image recognition, we also use them in the
present study. The input data pass through the middle
layer with the fewest nodes, which then outputs the data
with the original number of dimensions again. By training
the module so that the output restores the input image,
the image features can be extracted low-dimensionally
from the middle-layer nodes. We use a sigmoid function
as the activation function for the middle layer only;
for all other layers we use the ReLU function. Its high
performance on general tasks allows the features of an
unknown environment to be represented.

C. Motion-generation Module

For the motion-generation module, we use a multiple-
timescale recurrent neural network (MTRNN) [13], a
type of recurrent neural network (RNN) that can predict
and generate the next step given the current state. Unlike
a conventional RNN, the MTRNN comprises three types
of node that differ according to their time constants,
namely slow-context (Cs) nodes, fast-context (Cf) nodes,
and input–output (IO) nodes. With their large time con-
stant, Cs nodes are expected to learn the data sequence,
whereas Cf nodes with their small time constant are
expected to learn the detailed motion primitives. This
allows learning the long-term dynamics of the time-series
data associated with the primitives.
　 In forward calculation of the MTRNN, the output
values are computed. First, the internal value ui of
neuron i at step t is calculated as

ui(t) =

(
1− 1

τi

)
ui(t− 1) +

1

τi

∑
j∈N

wijxj(t)

 , (1)

where N is the number of neurons connected to neuron
i, τi is the time constant of neuron i, wij is the weight
value from neuron j to neuron i, and xj(t) is the input
value of neuron i from neuron j. Then, the output value
is calculated by

yi(t) = tanh (ui(t)) . (2)

The value of yi(t) is used as the next input value as

xi(t) =

{
α× yi(t− 1) + (1− α)× Ti(t− 1) i ∈ IO

yi(t− 1) otherwise
(3)

where 0 ≤ α ≤ 1 is the feedback rate and Ti(t) is input
datum i given as part of the teaching data. If neuron
i is an IO node, the input value xi(t) is calculated by
multiplying the output of the preceding step yi(t − 1)
and the teaching datum Ti(t) by the feedback rate α. By
contrast, for Cs and Cf nodes, the previous output value
is used as input. We can adjust the input data by means
of the feedback rate α. If we set the feedback rate to unity,
the model predicts the next step from the current step,
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which is known as closed-loop prediction. With closed-
loop prediction, given only initial information, the robot
can associate the following values and generate a series of
actions. It is as if the robot, provided with only the initial
data, can “close its eyes” and imagine what will happen
next without needing to see any movement. By contrast,
if we set the feedback rate to zero, the model predicts the
next step from the current step of the teacher data, which
is known as open-loop prediction. In addition, with open-
loop prediction, the robot can also generate motion if
provided with current input data other than the teaching
data. Therefore, with this method, the robot repeatedly
predicts images and generates the motion of the next step
from the current situation.
　 In backward calculation, we use the back propagation
through time (BPTT) algorithm [14] to minimize the
training error given by (4), and the weight is updated
as (5):

E =
∑
i

∑
i∈IO

(yi(t− 1)− Ti(t))
2
, (4)

wn+1
ij = wn

ij − η
∂E

∂wn
ij

, (5)

where η is the learning rate and n is the number of
iterations.

III. Experimental Setup

A. Task Design

We used the NEXTAGE humanoid robot developed
by Kawada Robotics [15], guiding it to try some tasks
with its right arm, which has six degrees of freedom
and one gripper. For the model to consider two types of
selection, namely according to function and according to
length, we prepared two stick-shaped tools and two rake-
shaped tools for training as shown in Fig. 2 (left). We also
prepared a stick-type tool for testing, a screwdriver, as
shown in Fig. 2 (right). All tasks were conducted using
the pig-shaped object shown in Fig. 2 (left); the stick-
shaped tools were used to slide the object whereas the
rake-shaped tools were used to pull the object in front.
As shown in Fig. 3, in each task two tools were placed
in front of the robot and the robot had to select one of
them. As shown in Fig. 4, there were three possible initial
tool positions and two possible initial object positions. At
this time, of the two tools to be placed, the one that did
not match the task execution was placed in the middle
position. We set a total of 72 tasks (12× 6; combination
patterns of tool setting × positions of tools), of which
we used 48 for training and 24 for testing. As for the
task command, we provided information to the robot via
two parameters: the first parameter expressed the “pull”
command and the second parameter expressed the “slide”
command. Before step 10, one of the two command
parameters was set to 0.9 according to the demanding
task. After step 10, we returned both parameters to zero.
In this manner, we set the system to give a command only

Fig. 2. Left: stick-shaped and rake-shaped tools and the object for
training. Right: stick-shaped tool for testing.

Fig. 3. Experimental setting. Two tools and the object are placed
in front of the robot in each task, and we guide the robot to do
sliding or pulling actions. With this setting, we allow the robot to
consider two types of selection, namely according to function and
according to length.

at the beginning of the tasks. Finally, the robot began
moving from a fixed initial position in every task.

B. Training Setting

Each of the 72 tasks took between 11.0 s and 18.5 s
to complete. By holding the robot in its final position
for a while after task completion, we recorded each set of
sensory motor data for the common time of 19.5 s. The
sensory motor data of the 72 tasks were recorded every
0.1 s, thus we sampled 195 steps each. At this time, we
moved the robot remotely and took the data. The image
data taken by a camera mounted on NEXTAGE had
12,288 dimensions (64 × 64 × 3; width × height × chan-
nel). This high-dimensional visual information was com-
pressed to 10 dimensions by the CAE. The CAE structure
is shown in Fig. 5. The extracted 10-dimensional image
features and initial image features, the seven-dimensional
joint-angle data, and the two-dimensional task-command
data were put into the MTRNN. The values of all
the data were normalized to [−0.9, 0.9]. Table I details

Fig. 4. Initial positions of tools and object. There are three possible
initial positions for each tool, all 1.5 cm apart, and two possible
initial positions for the object, both 10 cm apart.

816



Fig. 5. Structure of convolutional auto-encoder (CAE) feature-extraction module. This module compresses 12,288-dimensional data and
extracts 10-dimensional image features.

TABLE I
Structure of MTRNN

Node name Number of nodes Time constant
IO nodes 29 1
Cf nodes 120 10
Cs nodes 10 40

TABLE II
Settings of MTRNN input data

Input Feedback rate
Motor angle 1.0

Task command 0.0
Initial image feature 0.0

Image feature 0.2

the MTRNN structure. For the input, we modified the
closed- or open-loop feedback rate α as given in Table II.
Regarding the motor angle, the next position had to be
decided with reference to the previous position; we set
the rate to generate motion with closed-loop prediction.
Because the task command and the initial image features
were all fixed values, the prediction was set to open loop
and the fixed values were input each time. To make it
possible to adapt to the circumstances on each occasion,
image features were predicted with an open loop 80% of
the time. To make it possible to predict the next image
based on the previous one, 20% of predictions were closed
loop.

C. Experimental Evaluation

We conducted the following three experiments to eval-
uate the generalization ability of the proposed model:

(A) the robot generated motion offline using the 24
untrained data;

(B) the robot generated motion online using tools that
were set in the untrained position;

(C) the robot generated motion online using the un-
trained tool.

The offline method involves using data that are prepared
in advance, whereas the online method involves moving
the robot while taking current data and using them
for immediate prediction. In experiment A, we used
the data of 12 tasks in which the tools were untrained
combinations and 12 tasks in which the tools were set

in the untrained position shown in Fig. 4 with a red
dot. In addition, we analyzed the internal values of the
motion-generation module to reveal what is represented
therein. In experiment B, we assessed whether the robot
could handle the tools being in the unlearned position
while in motion. Finally, in experiment C, we provided
the untrained tool shown in Fig. 2 (right), issued the
“pull” task command, and assessed whether the robot
could handle this situation while in motion.

IV. Results

We trained the MTRNN with the data of 48 training
tasks and performed this 194,000 times, that being the
epoch whose error was the least in the 200,000 times
of learning. We then conducted the three evaluation
experiments using the trained model.

A. Offline Motion Generation

Figure 6 shows the trajectories of the motor angles
of (i) the target data prepared in advance and (ii) the
generated results. As can be seen, the motor data can
be generated along with the target data. The 10 other
experiments gave similar results. Hence, all of the tool se-
lections and actions attempted by the robot were correct
for the object position and task command. We therefore
reason that the robot can learn data and generate motor
angle data properly.
　 We also analyzed the internal values of the model.
Figure 7 shows the results of principal component anal-
ysis of the values of the Cs nodes at step 10 (Cs(10)) in
the MTRNN. Step 10 is when the task commands are
turned to zero and comes before grasping a tool, which
is around step 50. We can reveal the focus of the robot in
a series of tasks by analyzing the Cs node space, which
learns the features of sequential data. Consequently, as
shown in Fig. 7, the Cs node space expresses the features
of the tools to be used. In the figure, solid circles show
trained data and hollow circles show test data, changing
color according to the target-tool features. The horizontal
PC1 axis represents tool shape, while the vertical PC3
axis represents tool length. Different tool features are
separated and clustered. We confirmed that the motion-
generation module self organizes the features of the target
tools.
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Fig. 6. Trajectories of the six joint angles and one gripper angle of
the robot arm. The upper graph shows a set of experimental results
for an untrained tool combination. The lower graph shows a set of
experimental results for the untrained tool position.

Fig. 7. Results of principal component analysis of internal Cs(10)
values of motion-generation module. The color depends on the
target tool to be selected for each task. Different features of the
target tool are separated and clustered.

B. Online Motion Generation: Untrained Position

We experimented with four task settings shown in Ta-
ble III to evaluate whether the robot can select according
to both function and length. All trials succeeded in online
tool selection and task execution. We show one of these
trials in Fig. 8. In this experiment, we set the object in
the farther-away position and gave the robot the “pull”
command. The robot then succeeded in choosing the
longer rake and pulling the object as expected.

C. Online Motion Generation: Untrained Tool

Here, we set the object in the nearer position and gave
the robot the “slide” command. The results are shown
in Fig. 9.The robot chose the shorter stick that was
untrained, but the height of the arm was slightly mis-
matched with respect to the object, and the arm swung
out above the object. However, although the height did
not match, the selection and the attempted action by the

TABLE III
Settings for experiment B

Tools (set as upper/lower) Object position Command
short stick / long rake near slide
short rake / long stick near pull
long stick / long rake far slide
short rake / long rake far pull

robot were correct. We explain in Section V the reason
for this failure.

V. Discussion

With experiment A, we showed that the model was
trained correctly and could generate motion. From ana-
lyzing the internal values of the motion-generation mod-
ule, we reason that the robot acquired the features of
the target tool from the relationship between the sensory
motor data and the task command. In addition, the
robot recognized a suitable tool (i.e., one whose features
matched the task command and the distance to the
object) from the two tools in front of it before grasping
one. With experiment B, we showed that motion could
be generated even online, and with experiment C we
showed that unlearned tools could also be selected and
used. All tasks were done in series without using labels,
and we showed that the proposed model could solve two
problems associated with previous research, namely (i)
robots are hampered when using and operating unlabeled
objects and tools or conducting unlabeled motions, and
(ii) it is difficult for robots to perform a series of opera-
tions from tool selection to task execution by themselves
with only one model.
　However, in experiment C, the robot failed to move the
object because of the height of the arm. That problem
occurred because it is difficult for the robot to consider
three-dimensional space with only one RGB camera. We
could solve this problem by installing another camera to
consider the height.

VI. Conclusion

Unlike previous research, we constructed a model that
does not use labels or models of the environment and
actions and that can perform a series of operations from
tool selection to task execution. With the model, the
robot could acquire the features of tools and select one
according to its function or length to match the given
command and the environmental situation. To realize the
model, we allowed the robot to experience selecting a
tool and using it, and we recorded sensory motor data
during that time. In addition, we gave the robot task
commands, which were integrated with sensory motor
data and learned by the model. For evaluation, we con-
ducted three experiments, (i) offline motion generation,
(ii) online motion generation with an untrained tool
position, and (iii) online generation using an untrained
tool. We confirmed the generalization performance of
the model and showed that the robot could handle the
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Fig. 8. Sequence of robot movements in experiment with tool placed in untrained position. The robot succeeded in using a long rake-shaped
tool to pull the object placed in the farther-away position.

Fig. 9. Sequence of robot movements in experiment with untrained tool. The robot succeeded in select the shorter stick-shaped tool as
expected. However, it could not slide the object because the height of the arm with respect to the object was slightly mismatched, and
the arm swung out above it. However, the selection and the attempted action were correct.

unlearned tool and tool position while in motion.
　 The original motivation for using tools was to under-
stand the limitations of the robot body. In future work,
we will focus on the body restrictions of robots and will
construct a model that can consider not only which tool
to use but also whether to use tools.
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