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Abstract— Impedance control of humanoid robots, a form of
compliant control, allows them to move in a fashion similar to
humans and increase the safety of interactions with humans or
the environment. In low stiffness impedance control, gravita-
tional forces will cause the robot to deviate significantly from the
desired position. Thus, a gravity compensation term in the joint
motor torque command is required to counteract gravitational
forces. Ground reaction forces are sometimes used to estimate
the gravity compensation torque required for each joint. In
this paper, a novel method to estimate contact forces by using
model mass properties and relative force and torque sensor
data of each contact point with respect to all loaded limbs is
proposed. This simple and straightforward method, called the
proportional method, is able to resolve internal forces arising
from closed-loop kinematic chains in multi-contact situations,
for example the double support phase of bipedal robots, without
optimization. The proposed method is also more robust to
sensor error and is able to implicitly distinguish between
gravitational and external forces for impedance control. Simu-
lations and experiments using the humanoid robot HRP-4 are
performed to validate the proposed method.

I. INTRODUCTION

Humanoid robots, shown in Fig. 1, have wide applications,
for example in social care [1], manufacturing [2], and enter-
tainment [3]. Humanoid robot control aims to move the robot
in more human-like fashion using the whole body, rather than
just isolated body parts. This is highlighted by advances in
retargeting whole-body human motion for humanoid robots,
performing dances [3], or mimicking a lifting motion to
use humanoid robots as an evaluation platform of wearable
assistive devices [4]–[6]. These motions, although human-
like, are performed using stiff high-gain position control.
While position control performs well for isolated motions,
it can be dangerous if there are any unintended collisions.
Compliant control of rigid-joint robots, on the other hand,
provides a softer interaction paradigm closer to that of human
motion by dictating an interaction force around a desired
position, and can naturally absorb impact with less harmful
consequences [7]. Thus, for humanoid robot motion to be-
come more human-like or to achieve safer physical human-
robot interaction, compliant control is more appropriate [8].

Impedance control, a form of compliant control, combines
position and force control in a way that specifies a force out-
put as a result of input motion [9]. The applied motor torque
from an impedance controller τimp is governed by Eq. (1).
The system response is shaped to exhibit motion according
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Fig. 1. Humanoid robot HRP-4 in a) Choreonoid simulation, and b)
experimental setup side view and c) front view

to desired stiffness Kd and damping Dd coefficients when
the actual joint positions q and velocities q̇ deviate from the
reference joint positions qd and velocities q̇d. Inertial shaping
is also possible, but is omitted to simplify calculations.

Dd(q̇ − q̇d) +Kd(q − qd) = τimp (1)

Generalized system dynamics are defined by Eq. (2) with
floating base link combined position and orientation x,
system inertia I , bias forces C including Coriolis and
centrifugal forces, gravitational forces Fg and torques τg ,
motor torque τm, contact forces Fj where j ∈ 1...m, and
the Jacobian J with respect to contact j [10]. Subscripts b
and q identify if a variable is with respect to the robot base
link or joints:

I

[
ẍ
q̈

]
+

[
Cb + Fg
Cq + τg

]
=

[
0
τm

]
+

m∑
j=1

[
JTb,j
JTq,j

]
Fj (2)

For many robotic tasks, tracking a desired reference
position or trajectory in space is an important criterion.
In gravity-affected systems using only impedance control
(i.e.: τm = τimp), high stiffness gains Kd are required
for accurate unloaded position tracking. However, this is
counter-productive to compliant control. The addition of a
feedforward gravity compensation term τgc to motor input
τm, in Eq. (3), is used to counteract gravitational forces
τg [11]. Inclusion of τgc allows using lower Kd in the
impedance controller to achieve softer compliance while
maintaining accurate unloaded position tracking.

τm = τimp + τgc (3)
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Ground reaction forces (GRF), the forces exerted on the
robot from the ground or contact surface, can be used to
determine τgc, but can be difficult with multiple contact
points that form closed-loop kinematic chain, as internal
forces must be resolved. GRF can be measured directly using
force and torque (F/T) sensors [11], [12], or estimated using
optimization [13], [14] or proprioceptive data with model
properties [15]. Contact force estimation is a well studied
topic, and while optimization and model-based methods are
widely used, they can be difficult and daunting for users who
do not have any prior experience.

The focus of this paper is a novel method for the deriva-
tion of the gravity compensation term τgc for impedance
control of bipedal humanoid robots through estimation of
the GRF using F/T sensors. The proposed method does
not directly use the F/T sensor values, but rather combines
model mass properties with the proportional loading of each
contact point versus the total contact forces across all limbs.
This proportional method is simple and straightforward to
implement, while able to resolve the internal forces of
multiple contact points without resorting to optimization, and
is more robust to F/T sensor noise and calibration errors.
Most importantly, it is able to implicitly distinguish between
gravitational forces τg and external forces τext, which is
paramount for impedance control. This paper represents the
preliminary steps towards the goal of impedance-based whole
body control of a humanoid robot.

The breakdown of this paper is as follows: gravity com-
pensation and the proposed proportional method are de-
scribed in detail in Section II. In Section III, the pro-
posed method and another F/T sensor-based GRF estimation
method are tested both in simulation and on the humanoid
robot HRP-4 for impedance control, and the results are
discussed. Concluding remarks are made in Section IV.

II. GRAVITY COMPENSATION ESTIMATION

A. Gravity compensation estimation calculation

Gravity compensation, as the name implies, is a matter of
balancing gravitational forces with the applied motor torque.
In multi-contact floating base systems, for example bipedal
robots, weight distribution amongst the contact points must
be taken into account when calculating GRFs. These GRFs
can then be used to open the kinematic chain for calculating
τgc for each joint in that limb according to Fig. 2. A contact
force is assumed to be at the most distal point of the limb,
but may be measured somewhere else instead, as shown in
Fig. 2(a). For both single and multi-contact cases, gravity
compensation torque τgc,i for joint i is calculated using Eq.
(4), detailed in Fig. 2(b). The following notation is used:
subscript i ∈ 1...n refers to individual joints, and subscript
j ∈ 1...m refers to individual contact points. It is assumed
that there is only one contact point per limb. Joint torques
use the Greek letter τi, whereas torques located at contact
points are marked with capital Tj .

(a) (b)

Fig. 2. a) Overall contact force distribution and sensor layout, and b)
gravity compensation estimation τgc,i calculation

τgc,i = (pji × Fj + Tj + pCOM,above
i ×mabove

i g) · ai
mabove
i = msub

i −mbelow
i

pCOM,above
i =

pCOM,sub
i msub

i − p
COM,below
i mbelow

i

mabove
i

(4)

Where pji is the position from joint i to the jth contact
force estimation location (CFEL) pCFEL

j (e.g.: location of
F/T sensor); Fj and Tj are respectively the contact force
and torque at pCFEL

j ; msub
i is the mass distal of joint i;

mabove
i is the mass distal of joint i but proximal of pCFEL

j ;
mbelow
i is the mass distal of pCFEL

j ; pCOM,sub
i is the position

from joint i to center of mass (COM) of msub
i ; similarly

pCOM,above
i and pCOM,below

i are the positions from joint i to
COM of mabove

i and mbelow
i respectively; g is the gravity

vector; and ai is the joint axis vector of joint i. Unless
specified, all values are expressed in the robot base link
frame. Initial experiments attempted to only used model
properties to calculate gravity compensation, while ignoring
internal or loop forces. This open loop approach resulted in
errors in gravity compensation estimation, demonstrating that
internal forces cannot be ignored in multi-contact situations,
requiring the methods described below.

B. Ground reaction force estimation using direct sensor
method

Multi-contact systems form closed-loop kinematic chains,
and thus internal forces that are difficult to resolve alge-
braically may be present in the GRF. As mentioned in
Section I, there are many methods to resolving the internal
forces of the GRF when multiple contact points are present.
In this paper, we will focus on methods that use F/T sensors.
F/T sensors allow the contact forces, along with the internal
forces, to be measured directly as F sj and T sj . The superscript
s denotes that this estimation is obtained by directly using the
sensor values. Joint gravity compensation torque using the
direct sensor method τsgc,i is calculated by substituting the
GRF values Fj and Tj in Eq. (4) with the direct F/T sensor
measurements F sj and T sj as shown in Eq. (5). The direct
sensor method is the most straightforward method when F/T
sensors are used to estimate the GRF.
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τsgc,i = (pji × F
s
j + T sj + pCOM,above

i ×mabove
i g) · ai (5)

C. Ground reaction force estimation using proportional
method

Proper calibration of F/T sensors is a difficult and time-
consuming process. If performed improperly, absolute F/T
sensor data may not be trustworthy or accurate. To alleviate
this issue, a novel method is proposed that employs F/T
sensors, but does not use the sensor data directly. Instead,
the proportional GRF of each limb relative to the total GRF
across all limbs is used. This proportion is then combined
with model data to calculate GRFs. Hence, we call this the
proportional method, denoted by the superscript p. Contact
force F pj is estimated first, then used to estimate contact
torque T pj . The methods proposed here are valid for both
single- and multi-support phases.

Prior to estimation, the first step is to modify the frame
in which the following analyses will be performed. Certain
variables, for example those in Eq. (6), are multiplied by
rotation matrices Rf and Rt when estimating contact forces
and torques. Depending on which rotation matrix is used,
rotated variables are denoted with tilde and hat accents. The
purpose of change in reference frame and the definition of
rotation matrices are explained in Section II-D.

F̃ sj = RfF sj , g̃ = Rfg

F̂ sj = RtF sj , T̂ sj = RtT sj
(6)

Contact force and torque proportionality coefficients, αsj,k
and βsj,k respectively, are calculated for each contact point j
in each axis k ∈ x, y, z, according to Eq. (7):

αsj,k =
F̃ sj,k

m∑
j=1

|F̃ sj,k|
, βsj,k =

T̃ sj,k
m∑
j=1

|T̃ sj,k|
for k ∈ x, y, z (7)

Where | · | is the absolute value. Note that these coefficients
retain the directionality of the contact force, such that −1 ≤
αsj,k, β

s
j,k ≤ 1. For ease of notation, proportionality matrices

αsj and βsj can be formed by placing the elements in a
diagonal matrix αsj = diag(

[
αsj,x αsj,y αsj,z

]
) and βsj =

diag(
[
βsj,x βsj,y βsj,z

]
).

Contact forces are estimated with the assumption of static
conditions, such that dynamic effects are ignored. Thus,
the upper portion of Eq. (2) becomes Fg =

∑m
j=1 J

T
b,jFj .

By using lumped mass parameters at the center of mass
Fg = mg̃, and putting it in context of the proportional
method where JTb,jFj = F̃ pj , this equation becomes mg̃ =∑m
j=1 F̃

p
j . For multi-contact scenarios, this equation has

infinite number of solutions, as we are trying to estimate
the contact forces F̃ pj . Instead, we observe the resulting
summation F̃ diff = Σmj=1F̃

p
j , leading to Eq. (8):

mg̃ = F̃ diff (8)

Since F̃ diff sums the contact forces, the presence of opposite
forces will lower the magnitude of the resultant summation.
Dividing by the proportionality coefficients aids in recover-
ing missing opposing internal forces, as in Eq. (9):

F̃ tot
k =

F̃ diff
k

|
m∑
j=1

αsj,k|
for k ∈ x, y, z (9)

Recall that the coefficients αsj,k contain directionality. The
use of the absolute modifier outside of the summation in
the denominator, combined with the fact that the coefficients
can be positive or negative, means that forces in opposite
directions will result in summations less than one. Thus,
F̃ tot
k ≥ F diff

k . This step allows resolution of the internal forces
lost in the transition to Eq. (8). F̃ tot

k represents the summation
of the magnitude of all contact forces in axis k. Individual
contact forces are then reconstructed by multiplying the
total force F̃ tot with the proportionality coefficient, and then
multiplying by the transpose of the rotation matrix Rf:

F pj = (Rf)T F̃ pj , F̃ pj = αsjF̃
tot (10)

Contact torques T pj estimated using the proportional
method are performed in a similar fashion as above. The
moment balance with respect to the center of mass for a
static case is written in Eq. (11):

0 =

m∑
j=1

(T̂ pj + r̂j × F̂ pj ) (11)

Where r̂j = Rtrj is the position vector from the center
of mass to the jth contact point in the rotated reference
frame. Similar to contact force estimation, what is observed
in reality is only resultant summation of moments:

m∑
j=1

T̂ pj = T̂ pdiff = −
m∑
j=1

(r̂j × F̂ pj ) (12)

Similar to above, total torque T̂ tot
k is reconstructed by

dividing by the summation of proportionality coefficients in
Eq. (13), and individual contact torques Tj by multiplying
by the respective proportionality coefficient first, then the
rotation frame Rt transposed, as shown Eq. (14):

T̂ tot
k =

T̂ diff
k

|
m∑
j=1

βsj,k|
for k ∈ x, y, z (13)

Tj = (Rt)T T̂j , T̂j = βs
jT̂

tot (14)

Thus, the joint gravity compensation torque τpgc,i is calcu-
lated using Eq. (15), derived from Eq. (4):

τpgc,i = (pji × F
p
j + T pj + pCOM,above

i ×mabove
i g) · ai (15)

Although the contact model is not explicitly restricted to
being unilateral, as is typical for legged locomotion, the
proportionality F/T coefficients approach zero as contact is
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lost, acting as a pseudo-unilateral contact model. To further
remove ambiguity, sensor values opposing gravity below a
threshold are not considered to be in contact and are ignored
in GRF calculations (e.g.: a foot pushing up on an object is
not considered in contact for GRF calculation purposes.

D. Rotation matrices Rf and Rt

The purpose of the rotation matrices Rf and Rt is to
mitigate situations in Eqs. (9) and (13) where the denomi-
nators

∑m
j=1 α

s
j,k ≈ 0 or

∑m
j=1 β

s
j,k ≈ 0 for one or two, but

not all, axes k ∈ x, y, z, thus generating unstable values of
F tot and T tot. This situation occurs when there are forces
or moments that are equal in magnitude but opposite in
direction in a specific axis, but the vector-level summation is
non-zero. To alleviate this problem, rotation matricesRf and
Rt are generated to rotate the summations ∆F s and ∆T s,
according to Eq. (6), to point along unit vector ê = e

‖e‖ ,

where e =
[
1 1 1

]T
and ‖ · ‖ is the Euclidean norm.

These rotations redistribute the overall summation magnitude
across all axes so that no single axis is close to zero. Thus,
denominator terms

∑m
j=1 α

s
j,k 6≈ 0 or

∑m
j=1 β

s
j,k 6≈ 0 for all

axes k ∈ x, y, z. The result is that Eqs. (9) and (13) stabilize
as risk of near zero denominators is significantly lowered.
Rotation axis u and angle θ are defined in Eq. (16), and used
to calculate the rotation matrix defined in Eq. (17). Note that
rotation axis u and angle θ are recalculated for Rf and Rt

using their respective F/T sensor values.

u = sgn(Φ)Φ× ê, Φ ∈ ∆F s,∆T s

θ = sin−1(
‖u‖
‖Φ‖‖ê‖

) +
1− sgn(Φ)

2
π

(16)

R =

 cθ + u2xγ uxyγ + uzsθ uxzγ − uysθ
uxyγ − uzsθ cθ + u2yγ uyzγ + uxsθ
uxzγ + uysθ uyzγ − uxsθ cθ + u2zγ


uxy = uxuy , uxz = uxuz , uyz = uyuz

γ = 1− cθ , cθ = cosθ , sθ = sinθ

(17)

E. Special requirement for impedance control

Since the method presented in this paper uses the contact
forces of closed kinematic chains to calculate τgc, it is
important to be able to distinguish between gravitational τg
and external forces τext within the contact forces for the
purpose of impedance control. In Eq. (3), τm is split into
its constituents τimp and τgc. In an ideal situation, these
constituents perfectly represent their counterparts τgc = τg
and τimp := Dd(q̇ − q̇d) + Kd(q − qd) = τext. This is
an important distinction as τgc allows improved steady-state
unloaded position tracking, while τimp dictates the dynamic
response to external forces.

While the direct sensor method is able to resolve internal
forces, it cannot distinguish between external forces and
gravitational forces. Both are merged together in the sensor
data and treated as τ sgc = τg + τext, resulting in τimp = 0.
Thus, making it unsuitable for gravity compensation estima-
tion in impedance control. Further steps would be required
to allow the direct sensor method to be able to distinguish

between the two forces, for example by including a model-
based contact force estimation, but are beyond the scope of
this paper. Conversely, the proposed proportional method, by
virtue of using model properties and not absolute F/T sensor
values to calculate contact forces, is unaffected by external
forces when determining τgc. Thus, the proportional method
is able to implicitly distinguish between τg and τext, making
it suitable for impedance control. This difference is illustrated
in Section III.

III. RESULTS

A. HRP-4 Robot

The humanoid robot HRP-4 [16], shown in Fig. 1, is used
for experimental validation of the proposed method. HRP-4
has an anthropomorphic body with a total of 37 rigid-joint
degrees of freedom (DOF): two arms (9 DOF each), two legs
(7 DOF each), a torso (3 DOF) and a head (2 DOF). It is
designed to mimic the average Japanese woman at a height
of 1514 mm and weight of 39 kg. On-board sensors include
an inertial measurement unit (IMU) located in the waist link,
and six-axis F/T sensors located on each leg just below the
ankle joint, but above the foot and toe links, as shown in Fig.
2(a). Thus, the F/T sensors are not directly in contact with
the ground, and mass exists below the sensors. The HRP-4
robot used is a modified version of the standard commercial
HRP-4 model, where the hard shell is replaced with a soft
foam shell to further mimic the physical form of a human.

B. Simulation

Choreonoid simulation environment [Fig. 1(a)] is used to
verify the accuracy and compare the direct sensor τsgc and
the proportional τpgc gravity compensation torque estimation
methods. Although both methods accurately estimate the
torque required for gravity compensation when compared to
joint torque readouts in different static postures, performance
differences exist when the methods are subjected to different
types of sensor error. Three cases are used:

1) Addition of zero mean, uniformly distributed noise to
both left/right sensors (20 N peak-to-peak amplitude
for force values, and 3 Nm amplitude for torque values)

2) Constant rotation offset of F/T sensor values for right
foot only to simulate improper sensor calibration or
mounting (5◦ offset in each roll, pitch and yaw axis)

3) Scaling offset of right foot F/T sensor values by 1.2x
In all test cases, the robot is kept static in a neutral position
shown in Fig. 1(a), and the actual knee joint torque τ and the
gravity compensation estimations using the direct sensor τsgc
and proportional methods τpgc are compared. The different
sensor error types are applied one at a time, and two param-
eters, mean torque and signal variance, are measured over 3
seconds (at 200 Hz) and tabulated in Table I. τsgc and τpgc
calculations both use the same modified F/T sensor values.
In the case of sensor error type 1 with zero-mean noise, both
τsgc and τpgc have similar mean torque values compared to the
actual torque readout τ , but 63% reduction in signal variance
when using the proportional method compared to the direct
sensor method. For both error types 2 and 3, rotation offset
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TABLE I
EFFECT OF SENSOR ERROR ON RIGHT KNEE GRAVITY COMPENSATION

TORQUE ESTIMATIONS

Sensor Actual τ Direct sensor τsgc Proportional τpgc
Error Mean Var Mean Var Mean Var
Type ×10-5 ×10-5 ×10-5

Baseline -20.03 3.33 -20.11 11.0 -20.02 0.091
Noise -20.03 97.8 -19.33 498774 -20.16 186787

Rotation -20.07 0.78 -25.58 14.90 -22.57 3.18
Scaling -19.95 2.05 -24.55 15.13 -21.96 5.32

and scaling offset, errors in mean torque are also reduced
when using the proportional method compared to the direct
sensor method. A special property of the proportional method
is that if any type of error affects all F/T sensors in the
same manner, then the error is nullified as the proportional
method examines the relative differences between the F/T
sensor values.

As stated above, the direct sensor method of gravity
compensation is unable to distinguish between gravitational
and external forces, which is required for impedance control.
Fig. 3(b) demonstrates this issue where a load is applied
to impedance-controlled knee joints at t = 4 s. Using
the proportional gravity compensation estimation method,
impedance control is achieved and observed through changes
in q and increased impedance control input τimp, whereas
gravity compensation τpgc only changes slightly as a result of
shifting body posture. On the other hand, the direct sensor
gravity compensation estimation τsgc, calculated simultane-
ously for comparison purposes in Fig. 3(b), but not used
in the impedance control, is equal to the summation of
τpgc and τimp. Thus demonstrating that the direct sensor
method is unable to distinguish between gravitational forces
and external forces, which makes it unsuitable as a gravity
compensation estimation method for impedance control. This
fact is confirmed in a separate simulation where the direct
sensor method is used as the gravity compensation estimation
method used in the impedance control, but the knee joints
do not deviate from the set point when load is applied.

C. Experiments

To demonstrate the capabilities of the proposed gravity
compensation method with impedance control on the actual
robot, static posture experiments under different loading
conditions are performed. The robot is placed standing with
the hips and knees slightly bent and arms extended out with
a bend at the elbows, as shown in Fig. 1. Varying loads are
applied at the elbow joint by placing a combination of 1.2
and 2.5 kg weights inside a bag of negligible mass held up
by a 1.3 kg bar placed across the arms. All joints are kept
in place using high gain position control, whereas both hip
joints are controlled using impedance control with desired
stiffness Kd = 100 N/m and damping Dd = 5 Ns/m.

The robot is initially unloaded (NL). The first loading step
L0 places the 1.3 kg bar at the elbow joints. The load is then
incremented according to the following steps: L1 = 2.5 kg,

(a)

(b)

Fig. 3. Comparison of direct sensor and proportional method gravity com-
pensation calculation for right knee joint: a) joint angle, and b) impedance
control and gravity compensation torque values. Load applied at t = 4 s.

L2 = 5.0 kg, L3 = 7.5 kg, and finally L4 = 10.0 kg. The
entire load is then all removed from the robot in the final
step. As seen in Fig. 4(a), the applied external force induces
hip joint movement a result of impedance control. Increase
in τimp correspond to changes in q. Large variances in τgc
are also a result of the robot swaying and leaning during
loading of the weights. Inconsistent changes in hip angles
are a result of large amounts of joint friction, which can be
observed in the difference in hip angles for both unloaded
cases at t = 0 s and t = 75 s. Similar loading conditions in
simulation lead to hip angle changes up to 6.5◦, versus 2.5◦

on the actual robot. While the differences in angle between
simulation and the actual robot is fairly large and attributed
to joint friction, the results still demonstrate that impedance
control is achieved using the proportional method.

Experiments are repeated using direct sensor method and
regular high gain position control, and, as stated above, there
are no significant changes in hip angle as the weights are
loaded onto the robot. Furthermore, to confirm what was
observed in simulation, variance is measured at different
points and compared between the direct sensor method
and proportional method. During stationary portions of the
experiment, the proportional method achieved reductions in
τgc signal variance ranging from 33% to 85% compared to
the direct sensor method.

The use of model mass properties and relative F/T sensor
values assumes that the limbs always bear the entire weight
of the robot. Thus, problems arise while the robot is placed
on the ground during initialization of experiments. Assistance
from support scaffolding will cause the proportional method
to generate incorrect τpgc values that are too large for the
actual load on the feet until the scaffolding no longer
supports the robot. This issue is circumvented by creating an
initialization phase that only uses 40% of the robot mass for
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(a)

(b)

Fig. 4. Static posture experiments with HRP-4 robot under various loading
conditions: a) joint position and b) right hip torque values. NL = 0 kg,
L0 = 1.3 kg, L1 = 2.5 kg, L2 = 5.0 kg, L3 = 7.5 kg, L4 = 10.0 kg

τpgc calculations to allow the legs to collapse while lowering
the robot until both feet contact the ground. The proportional
method then slowly transitions to use 100% of the robot mass
for τpgc calculations.

IV. CONCLUSION

Gravity compensation estimation methods that directly use
force and torque sensor values may not be reliable and
are unsuitable for impedance control as they are unable to
distinguish between gravitational and external forces. In this
paper, a novel simple and straightforward method for gravity
compensation estimation for multi-contact impedance control
by combining model mass properties with relative F/T sensor
data to estimate contact forces is proposed. The proposed
method is able to implicitly distinguish between gravitational
and external forces, and is also more robust to sensor errors
such as noise, misalignment, and scaling. The application
and improvements of the proportional method are verified
using the humanoid robot HRP-4 both in simulation and
real world experiments. Impedance control is demonstrated
using static loading experiments, where hip joint angle
changes are observed when an external load is applied to the
robot. Simulation and experiments demonstrate the improved
robustness of the proposed proportional method in calcu-
lating gravity compensation torque. As this work presents
the precursor to implementing impedance controlled whole
body motions, ongoing and future work includes determining
the effect of model errors on the proposed method, com-
parisons to established contact force optimization methods,
implementing full body impedance control, and extending
the proportionality paradigm to bipedal robot balancing to
improve robot stability during whole body motions.
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