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Abstract—1t is very easy for biped robots to fall down. Some
previous studies have been carried out to detect the fall state
and protect the robot from damage. But it is not enough to
detect a fall. It is very important for the biped robot to predict
whether it will fall in the future based on the current state. In
this paper, we consider a fall state predicted problem for bipedal
robots. Based on the D ’Alembert principle, this method can
predict the fall state at the moment the biped robot deviates
from the normal state in every conditions such as standing
and walking. It can give the robot more time to recover from
the unstable state or protect itself from damage. And its stable
control strategy matching the proposed method is also proposed
to protect the robot from falling. The result is verified via
simulations.

I. INTRODUCTION

Over the past few decades, many studies have been con-
cerned with the walking stability of biped robots [1-3]. Most
methods are based on data from a three-dimensional linear
inverted pendulum (LIP) model. Because a biped robot is a
complex dynamical system, the trajectory generated by the
LIP model can not always guarantee the walking stability of
a biped robot. In addition, the high center of mass (COM)
and small contact area with the ground make it easy for the
biped robots to fall down when it is disturbed by the outside
world [4-10]. In fact, many conditions can lead to a change
in the COM state of a robot. This is why we need a method
that can predict whether a robot will fall down depending on
its current state.

Because the biped robots are very easy to fall, there are
a lot of researches to study the fall detection and the fall
protection. Javier Moya proposed two separate instability
detection methodologies that can be applied to the robot
while it is standing or walking. The first step is to measure
the trunk attitude to achieve fast instability detection [11].
The second method uses Hotelling’s T-square statistics to
perform anomaly detection with a predetermined statistical
confidence level. JUuiz-Del-Solar J et al. use the LIP model,
with an offset, to predict the robot’s COM motion. If success-
ful, this routine can prevent a robot from falling during the
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demonstration phase of DARPAs Robotics Challenge (DRC)
Finals [12]. Xinjilefu X et al. determine an offset of a robot’s
current capture point which is called the corrected capture
point (CCP) to save the robot from falling down twice during
the DRC Finals [13].

But most previous studies can only detect the fall state
which means that when the robot begins to fall it can detect
the state. When the robot lose its stability, it is a divergent
progress. It is very fast from the state that the robot lose
its stability to the state of the collision between the robot
and the ground especially when the robots are disturbed by
a great external force. It is very important for the robot to
predict its fall state. There are also some methods to predict
the fall state. A falling prediction for the robot standing
is proposed in [14] based on energy state. But it can only
predict the standing falling. Another method use the multi-
sensor to predict the falling state. It can also predict the
standing falling and the method is complex so it is hard to
meet fast prediction[15]. In this paper, our main contribution
is to propose a new method to predict the fall state no matter
in the robot standing or walking based on the current state in
real time. This can give more time for the robot to recover
from the fall state. Another contribution is to propose a new
recovery control strategy for the robot based on the optimal
control theory when the proposed method predicts that the
robot will fall in the future.

In this paper, we propose a method to predict a robot’s
falling state based on its current state, which can be used
while the robot is standing or walking. When a robot is
standing, its state can be modeled as a single rigid body.
When a robot is walking, its state can be modeled as a multi-
rigid body system. The input of the system is the trajectory of
a robot’s COM under normal condition. The proposed can
predict the deviation angle of the robot to decide whether
it will fall. By predicting the fall state of the robot, the
robot can adjust its foothold position and landing time, which
not only ensures the robot’s stability but also minimizes a
robot’s acceleration. At the end of the double support period
(DSP), the state of a robot’s COM can satisfy the divergence
conditions of the LIP.

The remainder of the paper is organized as follows. In
Section II, we evaluate the stability of a robot’s standing and
walking state when there is an interference. In Section III,
we propose a method that takes the ZMP, which is based on
the state of a robot after it has been disturbed by an external
force, as the input of the system. This step can return a
robot to a stable state in the shortest time. In Section IV, we
provide some simulation results to verify the effectiveness
of the method.
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Fig. 1. fall detection model when standing

II. THE STANDING MODEL OF THE FALL DETECTION
ALGORITHM

The classical mechanics [16] clearly explain the motion
law of the object. The proposed fall predicted method is
based on the classic mechanics to analyze the motion of the
biped robot in the non-inertial reference. The biped robot is
regarded as a rigid system.

A. standing model of fall detection algorithm

When a robot is standing, it can be modeled as a single
rigid system as shown in Fig. 1. The angular position and
velocity of a robot that deviate from the vertical direction
0, at time #; can be measured via angular sensors. The
term m represents the robot’s mass, which is concentrated
on the COM. The terms [;, I, and /3 represent the robot’s
size parameters. We first generate a dynamic expression of a
single rigid system where the initial angular position 6(z,)
and the angular velocity (f;,) are known

dé(t)

mg(%cose(t) —bsinB(t)) = fJ,,T, (1)

Where
G(tin) = le e(tin) = Gtk

where J, is the moment of inertia for the robot at the foot
position o. The angular position and velocity can be obtained
by integrating the two sides of Eq. (1).

l(6'2 —62) = "85, (cosB — cos 6;,) — l—l(sine —sin6y,) (2)

2 k Jo 2

From Eq. (2), we can establish the future relationship
between O and @ is based on the robot’s current state. A
standing robot can easily predict the likelihood of that it
will reach a critical state and fall. This critical state is shown
in Fig. 2. When the COM is located at the top of the foot’s
support point, the angular position is characterized by 0, and
its angular velocity is characterized by .. The resulting state
vector, characterized by the angular position and velocity
pair, is just zero. We define this state as the critical state a
robot reaches before falling. If the robot’s angular position
0 equals to the critical angle O, we only need to compare
the angular velocity with the critical angular velocity, which

Fig. 2. Critical fall state when standing

is always zero when a robot is standing still. There are three
possible outcomes for each element of the state vector. These
are shown in Eq. (3).

6 >0 falling down
0=0,,{ 6 =0 critical state 3)
6 <0  stablility

B. Fall detection model for a walking robot

When a robot is walking, its components are moving
relative to each other. Therefore, the robot can not be seen as
a single rigid body. The standing model can be regarded as a
special state. So we will propose a general falling prediction
method in this section.

When modeling a robot walking, the robot can be charac-
terized by a multi-rigid model, which can easily analyze a
robot’s state vector. As shown in Fig.3, when a robot walks
on a flat floor, the position of its foot is planned ahead (at the
end of the single support period). If the robot is disturbed,
the foot will not be parallel to the ground, which means that
the position state prediction will be incorrect since the foot
drops onto the ground at the wrong position. In addition, any
interference can also change the current position state of the
robot, including the position and velocity of the COM. These
incorrect state can very easily lead to a robot falling. Thus,
a robot needs to adjust its gait efficiently when it has an
interference.

As shown in Fig. 4, the foot of the swing leg should be
adjusted to the planned height 4. At any moment, the angles
of the joints in the legs of the robot are known and can be
classified into two sets O.(¢) = ( 01 L(¢) B6.L(t) ) and
Or(t) =( 61r(t) Bsr(f) ). The position and posture
of the COM in the world coordinate system only depends on
the angle of the support leg and its deviating angle 6. After
we know the position of the trail leg, we can calculate the
six angles of the trail leg according to inverse kinematics.
To ensure that a foot is always parallel to the ground, we
should define a compensation term 6., = —6.. The angle
0. can be measured by the sensor so the trail leg angles
can be updated in time to move the foot to a predetermined
trajectory, no matter what kind of external disturbance the
robot is subjected to.

As shown in Fig. 4, the robot is disturbed by an external
force and it has deviated from its angular position and normal
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Fig. 3. the robot is disturbed when walking
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Fig. 4. Walking model analysis and swing adjustment strategy based on
its current posture

posture 6. The COM also moves as planned, which is
characterized by the black line in Fig. 4. If the robot is
dumped forward, the support point is always o. Then we can
get the motion of the whole time based on the D *Alembert
principle.

J()0(t) —mg(cosO(t)- (x.—11) —sinO(t) -z.) = —mzcie (4)

where

6(tin) = Uet e(lin) = Gct

where z. is the distance between the COM and the planar
surface of the floor. J(¢) is the rotational inertia about the
supporting point of the robot’s foot, which depends on the
robot’s current state. The state can be expressed by the joint
angles 6y (t) and O (t). The terms O(t;,) and O(t;,) are the
initial conditions of the system, which are collected by the
sensor in the time domain.

J(t):‘](eij(t)vt) (i:RaL) (j:1>2»“'76) &)

R 6
J(0:(1),0) = Y Y (Je(63)) +mijsg o(6:5) (6)
i=Lj=1
where J.(6;;) is the rotational inertia of the COM associated
with ij. The parameter sc(6;;) is the distance between the
COM associated with ij and the supporting point of the foot.

0,=0.14rad,0,=1.75rad I s

0,=0.14rad,0,=1.04rad / s

6,=0.14rad, 6,=0.8Trad | s

angle {rad)

6,=0.14rad,6,=0.43rad | s

6,=0.14rad,6,~0.35rad / 5
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Fig. 5. Different interferences when the robot is walking

In control theory, when we consider X as the input of the
system, it is possible for the robot to predict its future state,
i.e., the position and velocity of the COM and the angle and
angular velocity of the robot. The system of equations is
not a system of linear differential equations. As a result, an
analytical solution can not be obtained. Therefore, Eq. (5)
needs to be discretized. Because the initial conditions and
the input X, are known, we can solve the numerical system
of equations. The resulting control cycle is characterized by
dand (r=k6 (k=1,2,..n) ).

We can predict future states of the robot while it is
walking, and disturbed by an external force. But unlike the
standing case, walking is a dynamic process; thus, there is no
fixed critical falling attitude. Predicting a falling state is much
more complex when walking than when standing. We only
consider the dumped falling in the longitudinal direction as
an example and it can also be applied in the lateral direction.
Because we can only calculate the numerical solution of
Eq. (7), we should analyze the numerical solution to find
a decision parameter.

We give the robot different sizes of force from small to
large for the same deviation angle. As is shown in Fig.5,
the deviation angle is 0.14rad and for different forces, the
initial angle velocity is also different. The green line is the
critical state which also means the maximum interference
that the robot can bear in this deviation angle. When the
external interference is greater than this value, the robot will
fall and when the external interference is smaller than this
value, the robot will not fall and the angle will come back
to the stable state in the future. In Fig.5, this method can
predict the falling state about 0.2s —0.4s ahead of time.

But for different deviation angles and for different robots,
the critical state is also different. So it is very important to
judge whether the robot will fall down in the future when
the critical state is not known. Through a lot of prediction
calculations, we can get that the tendency is the same. The
characteristic of derivative can be used to judge whether or
not to fall down. The criterion is shown in formula (7).

QU

0(t

=

do(t.) A 20 #1214 fling down
dt =0, o~ =0 t>1 critical state 7
B <0 1>1  stablility

Where 7. can be seen as the critical falling state. According
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Fig. 6. The calculation of the state parameters of a robot

to the formula(7), it is easy to predict the falling state of the
robot. This method can make sense in real time no matter
how long the external force acts on the robot. It only depends
on the current state of the robot including the deviation angle
and the angle velocity.

III. THE STABILITY CONTROL STRATEGY BASED ON
OPTIMAL CONTROL

A. The stable control strategy

In Section II, we propose a monitoring strategy that can
predict when the robot will fall. If the algorithm predicts that
the robot will not fall in the future, the robot will only adjust
its foot height 4 and the compensation angle 6, as shown
in Fig. 4. The compensation angle is used to ensure the foot
of the swing leg moves in accordance to the predetermined
trajectory in the world coordinate system. If 6, exists, then
the height of the COM in the world coordinate will also
change as shown in Fig. 6. The term x., is the position of
the COM in the forward direction in the world coordinate,
while z, is the position in the vertical direction.

(- n@oB0)
xqo(t) = f2(ecl(t)7 Gct(t)7 GS(t)7 GS(I))

®)
{ Ze,o(t) = 81(0ur (1), 05(1)) .
Zc,o(t) = g2(6ct(t)a ect(t)a GS(t)a GS(Z))
mah(t) +dah(r) + kah(t) = fa(r) 9

where
h(t) = zco(t) —hcom(t), fa(t) = fo(t) —mg

where mygy is the inertial coefficient of the spring damping
model, dy is the damping coefficient and kg4 is the Elastic
coefficient. The terms f, characterizes the contact force
between the sole and the ground in the vertical direction.
Eq. (9) works at the end of the single foot support period,
which is also the beginning of the double support period.
Because the height of the COM is not constant, the COM will
have a vertical speed. In order to avoid the collision between
the robot and the ground, we use the spring damping model.
In the double support period, the support area is larger than

—md=2,kd=-1,dd=20
—md=4,kd=-1,dd=30
0.01 md=2,kd=-10,dd=20 |
=0
=
-0.01 : : :
0 01 02 03 04 05 06

time (s)

Fig. 7. Different results of COM error for different parameters

that of the single support period. We can also use the LIP
model to plan the trajectory of the COM, where we can also
assume that the height of the COM is constant.

As is shown in Fig.7, for different parameters, the centroid
height error will converge to different values. What we need
is that the final error of the COM height is 0 so the black
line is suitable for the result.

B. Optimization of COM trajectory

If the robot is disturbed by an external force, the actual
COM state will also change. Therefore, it is essential for
the robot to adjust its state to a normal state. Based on the
falling detection method proposed in Section II, if the robot
will not fall down in the future, the single support period
is consistent with the planning time, but if not, the single
support period will change based on the state of the COM.
As is mentioned above, the falling is a divergent state so we
need to swing the leg to the ground ahead of time to make
it easier to restore to the stable state. Because in the single
support period robots have only toe or heel contact with the
ground so it is hard to recover the stabile state. Our control
method plays a role in the double support period.

The dynamic of the LIP has been discussed in [3-4] and in
this paper, our recovery control is also based on that. The step
length and the step time are very important for the robot and
this has been discussed in reference [3]. When the planned
ZMP trajectory satisfies Eq. (10):

Xz (t) = Z aix;,step (t)
where x/

/ 2step 18 the step function of ZMP at time #;, which is
X, step(t) = X step(t —1;) and o4 is the weight coefficient and
it also means length of every step. The whole number i is
the ith step. By reviewing previous work, we can provide a

single support period expression.

(10)

R T
T; = —Elna[xc(ts)—“

1

Xo(ts)
11

p ] (11)
We can determine the time that the foot of the swing
leg touches the ground via Eq. (11). When the step time
is determined, the foot length can also be determined via

Eq. (12) o
Xe (s
)

P [xc(ts) + (12)
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When the robot is disturbed by an external force, the
actual state of the COM is also different from the planned
state. The dynamics of the LIP is analyzed in reference[4].
Once the trajectory of the ZMP has been determined, the
initial state should satisfy initial constraint to guarantee the
stability of the robot. In this paper, we only consider this
stability criterion for a single support period. For the double
support period, we should adjust the posture of the robot in
an optimal way because the double support area is larger
than that of the single support period.

The LIP model describes the relationship between the
COM and ZMP. We use the acceleration of x. as the system
input to adjust the COM state, u(¢)=i.(¢). The system of
equations that characterized the LIP model is

X (1) 0 1 xc(1) 0

o= Lo ol [E0 [+ [
The intensity of the change in the state of the COM
directly affects the stability of the robot when it is walking.
When the robot is out of the original state, the initial
condition will not satisfy the initial stability constraint. In this
paper, we propose a minimum state change rate constraint
method to control the robot while it returns to a normal state.
Based on the LIP model, the input u(¢) is not arbitrary

and its constraint can be expressed by Eq. (14).

Xmin < u(t) < X¥max (14)

where

Xmin = wZ (x - xlznnz{;)

Kmax = ©*(x _x;nngr;l))

The initial constraint condition

xc(tin) = x¢(te)
e (tin) = e o(te)

where xg’nif[l, and x5 are the boundary of the support region
in the double support period. The boundary is related to the
current position of the COM. x.,(f.) and %.,(t.) are the
actual state of the COM at the end single support period
which is calculated based on formula (8). What we need in
the proposed method is to minimize the rate of change in

the state to define the objective function

J= /uz(t)dt

As we know. if the robot can walk stably in the initial
condition and The COM state must satisfy initial constraint.
Therefore, the terminal cross-section condition is

15)

e @0 x, (7)dt

1
Xc(te) + 5;éc(te) = .

IV. SIMULATION AND DISCUSSION

To validate the illustrated approach, the falling detection
and walking algorithm has been tested on the BHR-6 robot
in the V-REP simulation environment. The BHR-6 robot is
the latest humanoid robot of Beijing Institute of Technology
which is mainly concentrated on the multi-motion. It can
walk, craw, roll and recover form the fall detection.

0.15 1.5
future state of
~ pregigtion =
) T
f?, 0l g fture tateof
,0_;0 external force %ﬂ . preen
5 o external force
2005 e 20s
normal stand normal state
0 > 0
0 1 2 3 4 0 1 2 3 4
time (s) time ()
(@) (b)
Fig. 8. stand fall detection result ((a): small extern force (b)large extern
force
20
—~15+
=z
o
[O]
010+
C
[0]
S
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[0]
=
c
= 0
-5 : :
0 0.5 1 1.5
t (sec)
Fig. 9. interference acting on the walking robot

We first test the standing fall predicted method in our
robot. We give two different forces acting on the robot when
it is standing. The time of action is 0.3s. As is shown in
Fig.9, the left figure is the result of the acting force 20N. At
the end of the force action time, we predict the future state of
the robot according to the current state. It is obvious that the
robot will not fall down in the future so the robot will come
back to the stable state eventually. But for the right figure in
Fig.9, the acting force is 30N so the predicted result is that
the robot will fall down at the time 2.8s and this gives the
robot more about 0.3 to do the protective action.

Second, we test the walking falling predicted method.
When the robot is walking, it is more easy to fall down
than stand up. Besides, when the robot loses stability during
walking, the fall when walking is more faster than taht when
standing. Thus, the method that detects potential falls is more
important to the robot when it is walking. While the robot
is walking, its trunk state is always kept perpendicular to
the ground, making the position of the COM agreement
as planned. In Section II, We have provided the criterion
to determine whether the robot will fall down or not. This
criteria can determine all the cases that the robot may take
place. And we also verify the correction of the detection
method by giving an external force 10N whose action time
is 0.2s as is shown in Fig.10. The prediction result is shown
in Fig. 10.
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Fig. 11. walking cycle

As we can see in Fig.11, when the force acts on the robot,
our method will predict the future state in real time. In this
figure, we predict the future state every 0.2s. Because the
extern force is not very large, when the acting time of the
force is less than 0.16s, the predicted result is that the robot
will not fall in the future. When the acting time of the force is
0.16s, the state of the robot is a critical fall state. And when
the force continues to act on the robot, the predicted result
is that the robot will fall down in the future. The proposed
method can predict the fall sate in advance 0.2s —0.3s.

When the robot loses the stability, it will adjust its posture
to prevent itself from falling. So we also do some simulations
to verify the correction of the stable control strategy. First, we
plan the ZMP trajectory and use the LIP model to generate
the trajectory of the COM with a walking speed 1.0km per
hour as is shown in Fig.12.

Then we give an extern force at the beginning of the third
step when the robot is walking. The force is also 10N and
the time is 0.2s. As is shown in Fig.13, at the beginning of
the third step, the robot is disturbed by extern force. The
trajectories of the COM and ZMP are both changed. The
robot’s centroid trajectory will move forward quickly when
the robot is dumped forward. For the normal walking, the
walking step is 0.33m and the walking cycle is 1.2s. But
the change od the COM state will lead to the change of the
walking cycle. Basd on the formula(11), the walking cyclce
of the third step becomes 0.8s and the walking step becomes

extern

adjust COM
force \ ftrajectory
0.1 [
1 | |—planned ZMP trajectory
— [ | COM trajectory
E 005 ! !
= ‘ ! :
=} ™N
‘g N
e 0 oo\
S} [ |
= (|
b5 L [
£.0.05 L]
— [ |
[ |
01 L1 1
0 0.5 1 1.5
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Fig. 12. COM and ZMP trajectories when disturbed by extern force
1.5
o
O
L
©
>
)
o)
E£10:5
==
©
2
0
0 2 4 6
t (sec)
Fig. 13. COM and ZMP trajectories when disturbed by extern force

0.26m. At the end of the third step, the COM state will
return to the normal based on the optimization of the COM
trajectory. And the robot can also walk in the normal state.
The Fig.14 shows the walking cycle changes of the walking
when disturbed by extern force.

V. CONCLUSION

In this paper, we propose a fall detection method and
stable control method. Our method has the following major
contributions:

1). The fall detection method can predicted the future state
of the robot so the robot have more time to adjust its posture
to protect itself from damage.

2). The stable control method can optimize the state of
the COM when the robot will fall down.
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