
Multi-Sensor Fusion based Robot Self-Activity Recognition

Dingsheng Luo, Yang Ma, Xiangqi Zhang, Xihong Wu

Key Lab of Machine Perception (Ministry of Education), Speech and Hearing Research Center
Department of Machine Intelligence, School of EECS, Peking University, Beijing 100871, China

Email: {dsluo, mayang0001, zhangxiangqi, xhwu}@pku.edu.cn

Abstract— Robots play more and more important roles in
our daily life. To better complete assigned tasks, it is necessary
for the robots to have the ability to recognize their self-
activities in real time. To perceive the environment, robots
usually equipped with rich sensors, which can be used to
recognize their self-activities. However, the intrinsics of the
sensors such as accelerometer, servomotor and gyroscope may
have significant differences, individual sensor usually exhibits
weak performance in perceiving the environment. Therefore,
multi-sensor fusion becomes a promising technique so that to
achieve better performance. In this paper, facing the issue of
robot self-activity recognition, we propose a framework to fuse
information from multiple sensory streams. Our framework
takes Recurrent Neural Network(RNN) that uses Long Short-
Term Memory(LSTM) units to model temporal information
conveyed in multiple sensory streams. In the architecture, a
hierarchy structure is used to learn the sensor-specific features,
a shared layer is used to fuse the features extracted from multi-
ple sensory streams. We collect a dataset on PKU-HR6.0 robot
to evaluate the proposed framework. The experiment results
demonstrate the effectiveness of the proposed framework.

I. INTRODUCTION

Robots play more and more important roles in our daily
life, e.g. robots are used to serve human society in daily life
by making foods, doing cleaning and delivering medications
in hospital,etc. When they execute the assigned tasks they
need to handle tough environment like uneven terrains which
can lead them to lose balance. Besides, the accumulation of
the machine execution error may also lead robots to get out of
control. As an extreme example, a walking robot accidentally
fell, however, robot may keep moving its legs under a lying
down status and may subjectively and wrongly think it
still in walking status, since the current executing controller
is for walking. To face the external harsh environments
and internal execution error, the capability of self-activity
recognition becomes significantly important, which can help
robots to know their current status and ongoing activities
so that to output the judgement about whether everything
goes smoothly. Thereafter, robots can be free from occasional
situations like violating constraints, running some already
failed tasks or executing disorder activities.

To achieve such a goal, among various methodologies
on activity recognition, a sliding window based method [1]
is firstly investigated. In this kind of method, usually, a
sliding window is firstly adopted for feature extraction and
a distinguish classifier like Support Vector Machine(SVM),
Naive Bayes(NB) or Decision Tree(DT) is followed for

further activity classification. However, there are several
drawbacks in the sliding window based method. In feature
extraction process, typical features we select include time
domain features like Standard Deviation and frequency do-
main features like Direct Current. But these features may not
be representative as they are limited to heuristic knowledge.
It is also time consuming to gain the features within the
sliding window like frequency domain feature extraction
via Fast Fourier Transformation (FFT). The discriminant
classifiers like SVM, NB and DT can only use part of
the context information, they can not model long sensor
signal sequence that represent activity well. Because deep
learning has achieved great success in the field of computer
vision, speech recognition and many other, more and more
researchers have used deep learning for activity recognition
[2], [3], [4], [5]. One great power of deep learning models
is their capacity of learning high level representation from
raw data. In [2], Convolutional Neural Network(CNN) was
used to automatically learn high level abstraction from raw
time series signals. To further handle the temporal depen-
dencies, Recurrent Neural Network(RNN) which can model
the history information is a suitable choice. However, RNN
is hard to train when the sequence is long because of the
vanishing gradient problem [6]. To handle the long sequence
problem in robot self-activity recognition, we use Long Short
Term Memory(LSTM) to replace RNN. LSTM is introduced
to solve the vanishing gradient problem by extending RNN
with memory cell[7], which can be used to store, output and
ease information. In [3], [4], [5], LSTM showed capacity for
learning long temporal dependencies.

There are some studies on recognition capability for
robots. Robots usually carry on many sensors which can be
used for their self-activity recognition. Sensor signals like
accelerometer data, gyroscope data, joint angular positions,
sonar data, lidar data and vision information from first-view
camera can help a lot. In [8] acoustic signals are used for a
legged robot to percept terrain types. In [9], vibration data
is used for an outdoor robot percept different ground types.
However, these works may not fully used the sensors worn
on robot body. In order to avoid possible drawbacks derived
from each individual sensor, multi-sensor fusion technology
has received attention in recent decades [10]. In our research,
to better recognize robot status multi-sensor fusion based
method is considered. This is also inspired by the fact that
humans combine signals from the five body senses (sight,

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7282-2/18/$31.00 ©2018 IEEE 834

sound, smell, taste, and touch) to better perceive the world
including the inner status and the outer environments [11].

To overcome the drawbacks of sliding window based
methods mentioned above, we use an end-to-end LSTM
based framework as [12] which just takes a sample of raw
sensor signal sequence as input. With this end-to-end LSTM
based framework, our approach can work just in time, such
that the classification can be done online at every time
step. To learn sensor-specific features we use a hierarchy
structure as [13] which feed different sensor signal sequences
to different sub-models and fuse the extracted features in
intermediate layers of the network. To fuse the extracted
features better we add a shared layer which shared by
different sub-models into the architecture describe before.

The remainder of this paper is organized as follows. In
Section 2, we introduce the related work on activity recogni-
tion and sensor fusion. In Section 3, we first review the RNN
and LSTM, then illustrate our end-to-end Hierarchy LSTM
framework with shared layer. Activity dataset, experimental
settings and results are given in Section 4. Finally, we
conclude the paper in Section 5.

II. RELATED WORK

Investigation from literatures shows that few works have
been done on robot self-activity recognition, but we can
refer experience from the works on human activity recog-
nition, for which a number of classifiers and various feature
extraction methods were investigated. These methods can
be integrated into a typical chain that contains four stages
[1], firstly acquiring data from multiple sensors with some
preprocessing, then segmenting the preprocessed data, after-
ward representative features are extracted from the segments,
finally classifiers are trained with the extracted features and
their corresponding labels.

Sliding window based method is a dominant framework
for activity recognition. The procedures of this method is
that, firstly using sliding window for sequence segmentation
and feature extraction, then followed by discriminative clas-
sifiers like SVM or NB. The sliding window moves over the
sequence with a fixed window length and step size to do data
segmentation, window length and step size are parameters
that require our prior knowledge. The parameters can be
seen as a trade-off between accuracy and efficiency [14], the
larger the step size and window length are the more accuracy
we can get, but the time we need to go over the sequence
and extract the designed features increases at meanwhile. In
this framework, the accuracy may also limited by classifiers
like SVM or NB, for they can only use partial context
information.

With the great success of deep learning in other fields like
Natural Language Processing, Computer Vision and Speech
Recognition, more and more researchers have adopted deep
learning for activity recognition [3], [2], [4], [5]. Two main
problems need to be solved in activity recognition, i.e. how
to get proper representation from the raw sensor signals and
how to capture the temporal dependencies lay under sensor
sequence. So deep learning models which can learn high

level representation and model temporal dependencies are
suitable choices.

In [2], an architecture employed CNN to do automatically
feature extraction for activity recognition is proposed, and
it got state-of-art result in Opportunity Activity Recognition
dataset and Hand Gesture Dataset. One advantage of this
proposed architecture is feature extraction with no need for
hand-crafted manners and the other main advantage is feature
extraction process and classification process are unified into
one process to mutually enhanced performances.

Activities are composed by a series of complex relative
movements, LSTM which can model the long term contex-
tual information of sequential inputs is a fundamental choice.
LSTM is usually stacked within or between layers to do
features extraction, features fusion and sequence modeling
[3], [5], [9], [13]. As for robot self-activity recognition,
[15] which used Long-term Recurrent Convolutional Net-
work(LRCN), may be one of the early attempts. It combined
first-view vision features which extracted by CNN together
with joint positions of arm as a representation for robot
activity, then used LSTM to learn the pattern underlay the
sequential features.

Signals which can help robots recognize their self-
activities are often observed using multiple sensors. Sensor
fusion which means to get a richer representation compared
to use the sensor signals individually is needed [11]. Sensor
fusion is usually classified into three categories, early fusion
or data-level fusion, intermediate fusion or feature-level
fusion and late fusion or decision-level fusion [16].

Data-level fusion means fusing the raw or preprocessed
data from different sensors. In [3], the authors use signals
collected from ten sensors worn on ten different body posi-
tions to classify the activity performed. In their work, authors
concatenated the ten separate sensor signals and then used
the concatenated sensor signals as the input of a Deep LSTM
model. However, the raw data-level fusion may not consider
the sensor-specific intrinsics, especially for sensors that vary
significantly.

Feature-level fusion means the fusion of the hidden layer
units of different sub-models, this often leads to a hierarchy
structure in neural network. In [5], a hierarchical LSTM
is used for human activity classification. In their work,
according to the human body structure, they decomposed the
body into five parts including two arms, two legs and one
trunk. The lower level of the network is used to model the
Separate five parts describe above, with the network going
deeper it focus more on the combination of individual parts,
e.g. combine left arm and trunk into left upper body and then
combine left upper body and right upper body into upper
body and finally combine upper body and lower body into
whole body. In a driver activity participation task [13] three
parallel LSTMs are used in first layer to extract features
from three different sensors including a camera facing the
car driver, a camera facing the road and a GPS recording
vehicle’s dynamics. From these works, we can see that the
hierarchy structure compared to the deep model without
hierarchy structure can help to learn sensor-specific features

835

and the common features underly in the separate extracted
features.

Decision-level fusion means the aggregation(e.g. averag-
ing score or voting) of decisions from classifiers trained sep-
arately on different sensor signals. Late fusion performs bad
unless the input sensor signals are significantly uncorrelated
[16].

The structure we propose combines the two structures of
Data-level and Feature-level. We use separate LSTM layer
to learn sensor-specific features, and a shared layer to let the
network better integrate features from different sensors.

Among these different kinds of fusion methods, feature-
level fusion is used mostly widely, because of the facility
provided by the neural network architecture. However, when
and how to integrate hidden units requires research.

III. MULTI-SENSOR FUSION BASED MODEL

In this part ,we first give an overview of recurrent neural
network(RNN) and Long-Short Term Memory(LSTM) to let
this chapter be self-contained. Continually, we introduce the
LSTM based end-to-end architecture which can help robots
identify in real time. Then introduce the hierarchy structure
we used and the shared layer we proposed to fuse the sensor-
specific features.

A. Review of RNN and LSTM

The main difference between RNN and other feedforward
neural networks is the inputs of RNN not only contains the
input of current time step but also the hidden state of the
previous time step. Due to this recurrent structure, RNN is
able capture the temporal dependencies in sequential inputs.
Given an input sequence x = (x1, x2, ..., xt), the hidden
states of a recurrent layer h = (h1, h1, ..., ht) and the outputs
of RNN y = (y1, y2, ..., yt) can be calculated as follows

ht = f (Whxxt +Whhht−1 + bh) (1)

yt = Softmax (Wohht + bo) (2)

where Whx, Whh and Woh denote the connection weights
from input layer to hidden layer, hidden layer to hidden
layer and hidden layer to output layer respectively. bh and bo
represent bias vectors for hidden layer and output layer. f is
activation function which used tanh or sigmoid commonly
and Softmax is activation function that maps a vector to
different class with different probability.

When facing long sequence, RNN is hard to train due
to the exploding gradient and vanishing gradient problem
[6], [17]. As for the exploding gradient problem gradient
clipping technique can be used [17], and for vanishing
gradient problem LSTM was designed [7]. Fig. 1 illustrates
a LSTM unit. It contains a memory cell which convey
information through out the time sequence and three different
gates including a input gate, a forget gate and a output gate.
The three gates control three operations to the information
stored in memory cell, add(input gate), remove(forget gate),
output(output gate).

Fig. 1. An illustration of Long Short Term Memory cell architecture.

Fig. 2. Sequence-to-sequence training procedure for RNN, which maps
input sequence X = (x1, x2, x3, ... , xn) to target sequence Y = (y1, y2,
y3, ... , yn).

The activations of the memory cell and three gates can be
calculated as follows

ft = σ (Wfxxt +Wfhht−1 +Wfcct−1 + bf) (3)

it = σ (Wixxt +Wihht−1 +Wicct−1 + bi) (4)

ct = ft � ct−1 + it � tanh (Wcxxt +Wchht−1) (5)

ot = σ (Woxxt +Wohht−1 +Wocct−1 + bo) (6)

ht = ot � tanh (ct) (7)

where h is hidden states. f , i, o and c are the forget gate,
input gate, output gate and cell states respectively, they are
all the same size with the hidden states. σ is logistic function,
tanh is activation function using tanh, � is product, they are
all applied element-wise. Wfx, Wfh, Wfc, Wix, Wih, Wic,
Wcx, Wch, Wox, Woh, Woc are weight matrixes mapping
from input to output(e.g. Wox maps input x to output gate
o).

B. End-to-End Framework

We use an end-to-end LSTM based framework that take
each sample of sensor signal sequence as input. Instead of
use the label data at the last time step of input sequence,
we use the label to serve as supervised data at every time
step. Now suppose the data is in pair of input sequence x =
(x1, x2, ..., xT) and class label y, we train our model with
sequence-to-sequence LSTM which maps (x1, x2, ..., xT) to
(y1, y2, ..., yT) where yi = y for every i in range T. This
framework is showed in Fig. 2. This sequence-to-sequence

836

Fig. 3. Architecture of Hierarchy LSTM.

procedure can achieve our goal of real-time recognition
and can force the classifier to classify correctly as early as
possible at the same time.

To use our model in a classification task, Softmax layer
is taken as the last layer of the neural network architecture.
Softmax function can map the hidden states to a real-valued
vector, the vector can be used to represent a categorical dis-
tribution, what is a probability distribution over K different
possible classes. The probability for class c given the hidden
states has the form that

P (y = c|h) = exp(Wch+ bc)∑
i∈K exp(Wih+ bi)

(8)

where h is the hidden states, Wi and bi represent the weight
and bias for class c respectively and K is the total number
of activity categories.

We use a loss layer with cross entropy loss, for a sequence
of length T, the loss function has the form that

loss =
∑
t∈T

∑
k∈K

−ztklog(ytk) (9)

where z is the one-hot encoding of class label and ztk is equal
to 1 if the label at time step t equals to k and otherwise 0,
ytk is the probability of k we predict at time step t.

C. Hierarchy Architecture with a Shared Layer

To better introduce the shared layer we use, we first review
the base hierarchy architecture which our architecture derived
from. The architecture is shown in Fig. 3. In the first LSTM
layer l1, three sensor signals are fed into three different
LSTM layer l1. A fully connected layer f1 is used to fuse
the representations of the three sub-models. Then LSTM
layer l2, fully connected layer f2 and Softmax layer are
sequentially applied to get the prediction of behavior. The
network architecture we use is illustrated in Fig. 4. Compare
to the hierarchy structure in Fig. 3, we keep separate LSTM
layer l1 to learn sensor-specific features, and we add the
shared layer f1 to let the network better integrate features
from different sensors.

Fig. 4. Architecture Hierarchy LSTM with a shared layer.

Now we have three sensory streams, S = {s1, s2, ..., st },
I = {i1, i2, ..., it }, P = {p1, p2, ..., pt }, where S denotes the
signal sequence of servomotors, st denotes the servomotor
signal at timestamp t. I and it, P and pt for IMU and pressure
transducer correspondingly. For the first LSTM layer l1, we
can compute the hidden state for LSTM layer l1 by,

(ht1s , c
t
1s) = LSTM1

s (st, h
t−1
1s

, ct−11s
) (10)

(ht1i , c
t
1i) = LSTM1

i (it, h
t−1
1i

, ct−11i
) (11)

(ht1p , c
t
1p) = LSTM1

p (pt, h
t−1
1p

, ct−11p
) (12)

then we use a fully connected layer the get the shared
information from three different sensors

f t1 =Wf ([h
t
1s ;h

t
1i ;h

t
1p] + bf) (13)

where ; means concatenation, after we get the shared rep-
resentation of three different sensors, we combine the rep-
resentation with sensor-specific features extracted from first
LSTM layer, so for the states of the second LSTM layer,

(ht2s , c
t
2s) = LSTM2

s ([h
t
1s ; f

t
1], h

t−1
1s

, ct−11s
) (14)

(ht2i , c
t
2i) = LSTM2

i ([h
t
1i ; f

t
1], h

t−1
1i

, ct−11i
) (15)

(ht2p , c
t
2p) = LSTM2

p ([h
t
1p ; f

t
1], h

t−1
1p

, ct−11p
) (16)

the features combined from three sensors can be represented
by,

f t2 =Wf ([h
t
2s ;h

t
2i ;h

t
2p] + bf) (17)

finally, we get the prediction with a Softmax layer,

yt = Softmax(f t2) (18)

As for training, the loss of proposed architecture is be
computed in the way described in formula (9). And Back
Propagation Through Time (BPTT) is used [18] to update
all the weights in this architecture.

837

(a) (b)

Fig. 5. The humanoid robot PKU-HR6.0. (a) The appearance (b) The
schematic diagram of the joints’ positions and orientations

IV. EXPERIMENTS AND RESULTS

A. PKU-HR6.0 Activity Dataset

Robots need to accomplish tasks in different situations.To
let them know what they are doing, we need to equip robots
with the ability of self-activity recognition. Due to this goal,
we investigate the activity datasets about robots. In [19], the
authors collected a dataset using a NAO robot. The dataset
including 6 activities, such as left arm ring, right arm ring,
etc. These activities are performed by two arms involving ten
joints. In [15], the authors collected both arm joint positions
in 3D space and first-view vision of Baxter Robot. 12 daily
tasks like sweeping, pushing button were performed by the
Baxter Robot. To our knowledge, there exists no dataset
about humanoid robots for whole body activities, so in this
research,we collect a dataset on PKU-HR6.0 robot.

The robot we use, as shown in Fig. 5, is named as PKU-
HR6.0. PKU-HR6.0 is the 6th generation kid-size humanoid
robot (3.93kg weight and 59.50cm heights) designed and de-
veloped by our lab. An Intel mini PC NUC 5I7RYH (2 cores,
4 threads) serves as the central controller. It works on Ubuntu
14.04 LTS and Robot Operating System (ROS) Indigo. It has
22 degrees of freedom (DOFs) driven by Dynamixel RX-
28 and RX-64 servomotors, four servomotors in each arm,
six servomotors in each leg and two servomotors in neck.
Further the robot is equipped with a 3-axes IMU and one
pressure transducer under each foot. With 22 servomotors
we record angular position for each joint, such we have a
signal with 22 dimensions. With IMU we record 3 axes linear
acceleration, 3 axes angular velocity and 3 axes angular
acceleration, such we have a signal with 9 dimensions. With
pressure transducers we record 4 physical pressure per foot,
such we have a signal with 8 dimensions. The sensor signal
at each time-step has totally 39 dimensions.

This dataset involves 14 kinds of activities. We record the
data with a sample rate 30HZ, the activity sequences last
from 3 seconds to 15 seconds, so each sequence has 150 to
450 sensor signal samples. Each activity was performed 12
times. The activities we collects are listed in TABLE I.

TABLE I
ACTION LIST IN THE DATASET OF PKU-HR6.0

Action Description Duration(s)

Walk on marble Robot walk on marble 12
Walk on carpet Robot walk on carpet 12
Lay back Robot lie on the ground with a back

up gesture
5

Lay face Robot lie on the ground with a face
up gesture

5

Sit Robot keep sitting posture 5
Crouch state Robot keep crouching posture 5
Crouch up The robot changes from kneeling

to standing
4

Crouch down The robot changes from standing to
kneeling

4

Stand Robot keep standing posture 5
Wave hand Robot wave to people 5
Shake hand Robot shake hand with people 5
Nod head Robot nod its head 5
Brace floor Robot support itself on the floor 5

B. Experiment Settings

We validate our proposed architecture on our PKU-HR6.0
dataset. To study the effectiveness of the proposed archi-
tecture, we conduct experiments under different network
architectures derived from the proposed architecture:
• Deep LSTM only uses servomotor signal sequence as

input
• Deep LSTM only uses inertial measurement unit(IMU)

signal sequence as input
• Deep LSTM only uses pressure transducers signal se-

quence as input
• Deep LSTM uses concatenated servomotor, IMU and

pressure transducer signal sequence as input
• Hierarchy LSTM feeds different sensor signal sequence

to sensor relative sub-model and concatenates extracted
features in intermediate layer

• Hierarchy LSTM feeds different sensor signal sequence
to sensor relative sub-model and use a shared layer to
fuse extracted features

We implement all the architectures mentioned above by
using PyTorch which is a deep learning software package
open sourced by Facebook [20]. The number of units in input
layer is set according to the dimension of input sensor signal.
The number of units in output layer is set to 14, for we
have 14 kinds of activities to recognize. As for hidden layer,
for different architectures we cannot use the same number
if hidden units, so we keep the number of parameters for
different architectures in the same level.

In order to get the best performance, we first normalized
the data, such that input data have zero-mean and a standard
deviation of 1. Then we use the method mentioned in [5] to
smooth the samples in the sensor signal sequence, which has
the form

fi = (−3xi−2+12xi−1+17xi+12xi+1−3xi+2) / 35 (19)

where xi denotes the data samples in the i frame, and fi
denotes the smoothed result. We use the smoothed signal
sequence as input.

838

TABLE II
ACCURACY FOR SELF-ACTIVITY RECOGNITION

Method Accuracy(%)

Deep LSTM with servomotors 48.98
Deep LSTM with IMU 70.15
Deep LSTM with pressure transducers 69.52
Deep LSTM with concatenated input 74.80
Hierarchy LSTM 83.50
Hierarchy LSTM with Shared Layer 90.50

In training phase, LSTM is trained using Stochastic Gra-
dient Descent(SGD) with BPTT, the back propagation step
length is set to 10. The learning rate is set to 0.00015 at
beginning and is decreased during the training process. All
weights of the network are initialized randomly from the
interval [-0.1, 0.1]. To prevent the exploding gradient we
clip the gradient when its norm is larger than 5.

C. Results

Recognition accuracy for different models are listed in
TABLE II. When we use servomotor, IMU and pressure
transducer signal individually the performances are really
poor, they have accuracy of 48.98%, 70.15% and 69.52%
respectively. With the concatenated sensor signal as input,
we get a accuracy of 74.80% which is higher than the best
accuracy achieved by individual sensors. This improvement
shows, though the sensor intrinsics vary significantly, they
have complementary information that can promote each
other. After we use hierarchy structure shown in Fig. 3,
which feed different sensor signals to different sub-models,
the accuracy increases 9.31% compared to the accuracy using
concatenated input. This increment shows that sub-models in
hierarchy structure can help to learn sensor-specific features.
Finally, after we add the shared layer previously proposed
as illustrated in Fig. 4, we get the best performance, which
means the shared layer previously proposed helps to fuse
features extracted from different sub-models better than just
concatenated them into LSTM layer.

V. CONCLUSION AND FUTURE WORK

To prevent robots from the damage of anomaly situations
and ensure that the robot completes its task correctly, we
present an architecture for multi-sensor fusion based robot
self-activity recognition, which can help robots online per-
ceiving their activities in real time. The architecture is com-
posed by end-to-end manner which can let robots make their
recognition in real time, a hierarchy structure which can help
to learn sensor-specific features and a shared layer which
can fuse sensor-specific features better. The experimental
results on PKU-HR6.0 dataset demonstrate the effectiveness
of the proposed architecture. With this architecture, robots
can know their status every time such to be more intelligent.

In experiment we find similar activities are difficult to be
distincted from each other. In the future, we would like to
explore more activities to evaluate the proposed framework
for multi-sensor based robot self-activity recognition, and
may further explore the use of much more complicated

sensors that can be used for robot self-activity recognition.In
addition, we also plan to place the same sensor in the
wearable device or exoskeleton, for we believe that the
method applies not only to robots but also to humans.

ACKNOWLEDGMENT
The work is supported in part by the National Natural Sci-

ence Foundation of China (No. U1713217, No. 11590773),
the Key Program of National Social Science Foundation of
China (No. 12 & ZD119).

REFERENCES

[1] Bulling A, Blanke U, Schiele B. A tutorial on human activity recog-
nition using body-worn inertial sensors[J]. ACM Computing Surveys
(CSUR), 2014, 46(3): 33.

[2] Yang J, Nguyen M N, San P P, et al. Deep Convolutional Neural
Networks on Multichannel Time Series for Human Activity Recogni-
tion[C]//Ijcai. 2015, 15: 3995-4001.

[3] Ordóñez F J, Roggen D. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition[J]. Sensors,
2016, 16(1): 115.

[4] Hammerla N Y, Halloran S, Ploetz T. Deep, convolutional, and
recurrent models for human activity recognition using wearables[J].
arXiv preprint arXiv:1604.08880, 2016.

[5] Du Y, Wang W, Wang L. Hierarchical recurrent neural network
for skeleton based action recognition[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015: 1110-
1118.

[6] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with
gradient descent is difficult[J]. IEEE transactions on neural networks,
1994, 5(2): 157-166.

[7] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural
computation, 1997, 9(8): 1735-1780.

[8] Christie J, Kottege N. Acoustics based terrain classification for legged
robots[C]//Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016: 3596-3603.

[9] Otte S, Weiss C, Scherer T, et al. Recurrent Neural Networks
for fast and robust vibration-based ground classification on mobile
robots[C]//Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016: 5603-5608.

[10] Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps[J].
The International Journal of Robotics Research, 2015, 34(4-5): 705-
724.

[11] Elmenreich W. An introduction to sensor fusion[J]. Vienna University
of Technology, Austria, 2002, 502.

[12] Song S, Lan C, Xing J, et al. An End-to-End Spatio-Temporal
Attention Model for Human Action Recognition from Skeleton
Data[C]//AAAI. 2017, 1(2): 4263-4270.

[13] Jain A, Singh A, Koppula H S, et al. Recurrent neural net-
works for driver activity anticipation via sensory-fusion architec-
ture[C]//Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016: 3118-3125.

[14] Huynh T, Schiele B. Analyzing features for activity recogni-
tion[C]//Proceedings of the 2005 joint conference on Smart objects
and ambient intelligence: innovative context-aware services: usages
and technologies. ACM, 2005: 159-163.

[15] Li Z, Au C W, Kakiuchi Y, et al. What am i doing? Robotic self-action
recognition[C]//Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th
International Conference on. IEEE, 2016: 165-170.

[16] Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of
methods, challenges, and prospects[J]. Proceedings of the IEEE, 2015,
103(9): 1449-1477.

[17] Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent
neural networks[C]//International Conference on Machine Learning.
2013: 1310-1318.

[18] Kawakami K. Supervised Sequence Labelling with Recurrent Neural
Networks[D]. PhD thesis. Ph. D. thesis, Technical University of
Munich, 2008.

[19] Noda K, Arie H, Suga Y, et al. Multimodal integration learning
of robot behavior using deep neural networks[J]. Robotics and Au-
tonomous Systems, 2014, 62(6): 721-736.

[20] Paszke A, Gross S, Chintala S, et al. Automatic differentiation in
pytorch[J]. 2017.

839

