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Abstract— In this paper, we show that a robot equipped
with a flexible and commercially available tactile skin can
exceed human performance in the challenging tasks of material
classification, i.e., uniquely identifying a given material by
touch alone, and of material differentiation, i.e., deciding if the
materials in a given pair of materials are the same or different.
For processing the high dimensional spatio-temporal tactile
signal, we use a new tactile deep learning network architecture
TactNet-II which is based on TactNet [1] and is significantly
extended with recently described architectural enhancements
and training methods. TactNet-II reaches an accuracy for the
material classification task as high as 95.0%̇. For the material
differentiation a new Siamese network based architecture is
presented which reaches an accuracy as high as 95.4%̇. All the
results have been achieved on a new challenging dataset of 36
everyday household materials.

In a thorough human performance experiment with 15
subjects, we show that the human performance is significantly
lower than the robot’s performance for both tactile tasks.

I. INTRODUCTION

For autonomous robots to be able to robustly and dex-
trously act in physical contact with their environment, the
sense of touch is indispensable. A challenging example is
the dextrous manipulation with multi-fingered hands where
for the dynamical contact situation a feedback signal with
high force resolution in combination with a high spatial
and temporal resolution is needed. In fact, it is widely
accepted that a key prerequisite for closing the large gap
in manipulation performance between humans and robots is
to come closer to humanlike performance in robotic tactile
sensing [2] [3].

A task which can clearly demonstrate the capabilities
of a tactile sensor with respect to its force and temporal
resolution and, to a lesser extent, to its spatial resolution
is the identification of an object’s material by only gently
touching or sweeping over its surface.

In this paper, we show that we can exceed human
performance in tactile material classification and material
differentiation using only the spatio-temporal force signal of
a flexible tactile skin mounted on the hand of a humanoid
robot. The sensor used is a commercially available and ge-
ometrically configurable tactile foil sensor from Tekscan [4]
which could be easily mounted (e.g., glued) on the surface of
any robotic system. This is an important advantage compared
to other tactile sensors, e.g., the bulky sensor like the
BioTac [5] [6] for which parts of the robot hand’s structure
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Fig. 1. Robot vs. human: DLR’s Agile Justin [9] (left) and a human
subject (right) performing a sweeping motion to identify the material on
the surface of a given tube. Only the sense of touch can be used: the visual
cue is removed for the human by presenting the tubes behind a curtain and
the robot is blindfolded symbolically; the auditorial cue is removed by an
ear protector for the human (Agile Justin does not have a microphone).
Agile Justin is equipped with two DLR Hand-II [10] and to the soft finger
tip of the index finger of the right hand a flexible tactile skin with a 4× 4
taxel array is attached (see Fig. 2 for details). The procedure for exploring
a given tube is performed autonomously by the robot: grasp the tube with
the left hand to stabilize it; grasp the tube with the thumb and the index
finger of the right hand and slide down along the tube with the right hand
at a constant velocity of 3 cm/s for 2 s. The force is held roughly at 1 N
(precision about 20%̇) using the hand’s joint torque sensors. In the human
performance experiment, the subject performs a similar sliding motion with
the index finger of its dominant hand, only horizontally on a lying tube.

have to be replaced or stiff sensors, e.g., [7], which can not
be mounted on curved or elastic surfaces. Another example
of a flexible sensor mounted on a soft surface is iCub’s finger
tip sensor [8].

To reach superhuman performance, we use a modern deep
learning architecture and training methods for processing the
complex spatio-temporal tactile signal.

For comparing the tactile performance of humans and the
robot, we conduct human performance experiments on a new
representative set of 36 materials typically found in everyday
household environments. One task is tactile classification
where the unique identity of the touched material has to be
reported. This task measures the more high level or cognitive
performance. The second task is material differentiation in
which pairs of materials are presented and the human subject
has to report whether both materials are the same or different.
This task measures the raw sensor and low level processing
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performance as no long-term memory is involved.

A. Related Work

The seminal work in tactile material classification is Fishel
and Loeb [11] using the multi-modal BioTac [5] sensor
(including static and dynamic pressure, temperature and heat
flow). They report to classify C = 117 different materials
based on n = 15 training samples per material with an accu-
racy of 95.4% (but needing 5 trial motions on average) using
Gaussian classification on hand-designed features. However,
the sample data is acquired using a precisely controlled test
bench setup and the performance degrades dramatically when
transferred to a real robotic setup [12].

Fishel and Loeb [11] also conduct a small material dif-
ferentiation experiment where five human subjects had to
discriminate the materials in each of eight pairs of materials
(which were informally selected out of the C = 107
materials by the authors as being the hardest to discriminate).

In our previous work [1], we show that robust material
classification using a flexible tactile skin on a real robotic
setup is feasible with deep learning on the raw 24000
dimensional signal, i.e., without any preprocessing. This can
be regarded as a proof of concept where an accuracy of up
to 97.3% is reached but for only C = 6 material classes and
n = 80 samples per material.

In the same work [1], we also give an overview of related
work on tactile material classification which we summarize
here in Table I supplemented by more recent work shortly
described below.

Gao et al. [13] present a deep learning convolutional neural
network (HapticNet) to classify samples recorded from two
BioTac sensors mounted on a robot gripper during five
different exploration motions. Strese et al. [14] slide a self-
made multi-modal pen by hand over materials recording 25 s
long time series. Using only the haptic, i.e., acceleration,
signal (and not, e.g., the also recorded images) they reach an
accuracy of 39% using a Bayesian classifier on the signal’s
spectrogram [15]. Eguiluz et al. [16] use only the vibration
channel of the BioTac sensor in a well controlled turntable
setup where for each material in one 5 min sweep all tactile
data is recorded. For continuous material classification they
use a hidden Markov-Model based on features learned with
principal component analysis from the the Fourier trans-
formed sensor signal.

For the classification of C = 14 materials with a BioTac
sensor in a test bench setup, Kerr et al. [17] reach an accuracy
of 79%̇ using surface texture and thermal properties. The
authors apply principal component analysis (PCA) to extract
important features from the sensor data and a simple neural
network for learning them. They also conduct a material
classification experiment with 12 human subjects in which
the BioTac sensor based accuracy exceeds the human per-
formance.

Multi-channel neural networks are used by Kerzel et al.
[18] to classify a set of C = 32 materials based on the 3D
force signals of an OptoForce sensor [19] and in a test bench
setup. They reach an accuracy of 99%̇ but the performance

TABLE I
RELATED WORK IN TACTILE MATERIAL CLASSIFICATION

paper sensor setup C n a [%]
[11] BioTac test bench 127 15 95.4
[12] BioTac ShadowHand 10 15 99.0
[21] BioTac PA10 arm 49 50 97.0
[22] stiff skin Nao 5 30 100
[23] BioTac ShadowHand 20 10 83.5
[15] accelerometer robot 20 50 65.7
[24] accelerometer test bench 8 120 89.0
[13] BioTac PR2 53 10 83.2
[14] pen manual 69 188 39.0
[17] BioTac test bench 14 15 79.1
[16] BioTac test bench 34 eff. 3001 100
[18] OptoForce test bench 32 100 98.8
[25] GelSight manual 40 24 99.8
[1] flexible skin Agile Justin 6 80 97.3
this flexible skin Agile Justin 36 100 86.3

dramatically drops to 68%̇ when artificial Gaussian noise is
added to simulate a real world robotic setup.

Erickson et al. [20] use semi-supervised learning to rec-
ognize the material classes of 72 household objects by touch
(no sweeping, only moving until contact) based on the
force, vibration and thermal flow sensor signal of a bulky
sensor with no spatial resolution mounted on the PR2 robot’s
gripper. With 100 samples per object but for only C = 6
material classes they reach an accuracy of up to 96%̇ using
all n = 1200 samples per material in material classification.

In summary, most works on tactile material classification
use test bench setups (see Table I) although those results
do not transfer well to the noisy environment of a real robot
system. In this paper, we use the humanoid robot Agile Justin
which results in significant variation in the collected tactile
samples (see Fig. 2).

Our previous work [1] and this paper are still the only
ones which use solely the signal of a flexible tactile skin
for material classification, hence, a sensor which has the
aforementioned advantages with regard to providing a high
resolution spatio-temporal signal for dextrous manipulation
and its ease of mounting.

To our knowledge, there are no comparison studies of
tactile material recognition performance between humans
and real robotic systems. But also for the case of test bench
setups, only the two works of Fishel and Loeb [11] and Kerr
et al. [17] using the BioTac sensor conduct small experiments
for a comparison with human performance.

B. Contributions

• We show superhuman performance for both, tactile
material classification and material differentiation with
a set of 36 everyday household materials and in a
real robot setup using a commercially available flexible
tactile skin.

• To our knowledge, we conduct for the first time an
extensive human performance study for a combination
of tactile classification (high level) and differentiation

1The 5 min recording time results in effective 300 samples assuming
1 s sweeping time as we use in our experiments.
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(low level) performance and in comparison to the per-
formance of a real robot setup.

• We present our extended deep learning architecture us-
ing modern training methods for substantially increasing
the accuracy compared to the TactNet network [1].

• We present a network architecture for material differen-
tiation based on a Siamese network.

• We provide a new tactile dataset with 3600 samples
(100 samples per material) for 36 everyday household
materials recorded with the tactile skin as a public
benchmark dataset.

II. SAMPLE DATA SET AND EXPERIMENTAL SETUP

1) Robot setup: Fig. 1 and Fig. 2 summarize the exper-
imental setup for recording the tactile data with a flexible
tactile skin mounted on a robot’s finger tip. The robot setup
is similar to the one in [1] with the main difference that
we improved the method for mounting the skin onto the
finger tip allowing for long-term use (> 104 sweeps) of
the skin without replacement. Hence, other than in [1], our
focus here is not robustness when replacing and reattaching
the sensor but robustness against drift in the robot setup
(mainly the drift in the finger’s torque sensors) during long-
term experiments. For this, the dataset was recorded over a
time period of four days and on each day for each material
the same amount of samples were recorded.

2) Sample dataset: The C = 36 everyday household
materials of our new sample data set are depicted in Fig. 3.
The materials are glued to tubes or the tube is made of
the material2. For each material tube, we record n = 100
samples resulting in N = 3600 samples overall. The tube
is randomly rotated after each sweep and after 10 sweeps a
different material is chosen. We made the dataset publicly
available at [26].

3) Cross validation: To evaluate the classification perfor-
mance we always use a variation of stratified cross valida-
tion [27] such that, e.g., the training set has the exactly equal
number of samples for each material. Throughout this paper,
we use 5-fold cross-validation with 2 runs, i.e., the n = 100
samples per class are split in folds of 20 test samples and
80 samples for learning. When we perform hyperparameter
search the learning dataset with the 80 samples is further
split, again using 5-fold cross-validation, into 64 training
samples and 16 validation samples. This scheme guarantees
that the test samples of a given (outer) fold are never used
for training or hyperparameter optimization.

Performing a r-run k-fold cross validation results in rk
accuracy results from which we compute the mean accuracy
ā and its standard deviation σ. This σ represents the un-
certainty of the mean accuracy which is a combination of
the uncertainty σtest due to having only a finite number Ntest
of test samples and the uncertainty σover due to potential
overfitting problems. σtest can be computed separately by
identifying the mean accuracy as a sum of Bernoulli dis-
tributed random variables, one for each test sample. This
results in σtest =

√
1/Ntestā(1− ā).

2Only for (9, 10, 13, 14, 19, 20, 34) the tubes are made of the materials.
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Fig. 2. a) The finger tip with the flexible tactile skin taped to it (upper)
and the usage of a thin laboratory glove on top of the tactile skin to
increase the grip (lower). The tactile skin is a 4 × 4 taxel array sensor,
commercially available from Tekscan [4] (VersaTek® sensor 4256E), which
provides a spatio-temporal pressure signal at 750 Hz sample rate. b) Four
plots of the raw spatio-temporal signal of the tactile skin during the middle
1.33 s of the 2 s exploration motion along the tube. The 750 Hz sample rate
of the sensor results in a 1000 × 4 × 4 = 16000 dimensional sample,
which is used without any pre-processing in our end-to-end deep learning
method. To demonstrate how challenging material classification is in this
real world robotic setup (in distinction to a test bench setups), the upper
two plots depict two samples of the same material class (white metal) which
our network correctly recognizes as ”same” and the lower two plots show
samples for two different materials (cotton fabric reverse and linen fabric
smooth) which our network correctly classifies as ”different”. From looking
at the plots it seems the other way around: the lower two samples look more
similar than the upper two.

4) 1-sweep & 3-sweep exploration: The classification
accuracy can be increased by sweeping multiple times over
the given material. In this work, we evaluate the 3-sweeps
case in comparison to the 1-sweep case. We simulate the
three sweeps by randomly drawing three samples (x1, x2, x3)
of the same class t from the test dataset and the network
computes the individual predictive probability distribution
p(t′|xi) for each of the samples. Given p(t′|xi), we use two
different schemes for computing the final reported class.

• Majority voting: compute the 1-sweep class ti =
argmaxt′ p(t

′|xi) for each sample and report the class
ti which occurred most often, in case of three different
ti, choose one randomly.

• Bayesian fusion: Because of p(t′|x1, x2, x3) ∝
p(t′|x1)p(t

′|x2)p(t
′|x3) in case of independent samples

and same number of samples per class, report the label
t = argmaxt′ p(t

′|x1)p(t
′|x2)p(t

′|x3).
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Fig. 3. The 36 everyday household materials. (0) synthetic leather
rough, (1) synthetic leather smooth reverse, (2) synthetic leather smooth,
(3) metallic jersey, (4) cotton fabric reverse, (5) cotton fabric, (6) linen
fabric smooth reverse, (7) velours paper reverse, (8) linen fabric smooth,
(9) wood, (10) white metal, (11) reflecting fabric reverse, (12) reflecting
fabric, (13) metal, (14) plastic smooth, (15) latex, (16) silicon, (17) jersey,
(18) velours paper, (19) wallpaper, (20) plastic rough, (21) spun fleece,
(22) synthetic leather rough reverse, (23) cork, (24) linen fabric rough,
(25) gunny, (26) carton, (27) denim, (28) carpet rough, (29) carpet smooth,
(30) metallic grid, (31) rubber rough vertical, (32) rubber smooth, (33) rub-
ber rough horizontal, (34) foam, (35) neoprene. Source: Materials 10 and
13 are from Alutruss (www.alutruss.com); 9, 14, 19, 20 from a standard h/w
store; remaining from Modulor (www.modulor.de), a shop for designers.

III. DEEP LEARNING METHODS FOR MATERIAL
CLASSIFICATION AND DIFFERENTIATION

A. Material Classification

In previous work [1], it has been shown that classification
of the high dimensional spatio-temporal tactile signal based
on deep learning in an end-to-end learning setting results in
superior performance compared to more classical two step
approaches. In those classical learning approaches, first a
separate feature extraction step is performed resulting in low
dimensional features which are then fed into a classifier, e.g.,
support vector machines or k-nearest neighbor.

The neural network architecture from [1], which we call
TactNet, is only used for a rather small set of 6 different
materials. Here, we take this original deep learning architec-
ture as a starting point for our significantly more challenging
classification task with 36 materials and extend it with
recently reported architectural enhancements and training
methods. Finally, we perform an extensive hyperparameter
and architecture optimization via random grid search and
using the procedure described in Sec. II-.3 with careful
distinction between training, validation and test sets.

1) Base network: The 3D spatio-temporal signal is first
converted into a 2D input signal by flattening the spatial
dimensions into one dimension as tests have shown that
using the full 3D signal results in no better performance

input (1000,16)

output 

maxpool, 10x1 

maxpool, 10x1 

maxpool, 10x1 

dropout 0.8

FCL, 512, BN, ReLU
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FCL, 2, softmax
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conv, 15x5, 64, BN, ReLU

conv, 15x5, 128, BN, ReLU

Fig. 4. a) Architecture of the TactNet-II network as used for tactile material
classification. b) Adapted Siamese network for material differentiation. It is
built from two pre-trained TactNet-II networks for mapping the inputs into
an abstract feature space where the Euclidean distance is computed.

but is computationally less efficient in the here used deep
learning software framework TensorFlow [28]. The signal
is then fed into a stack of convolutional and max-pooling
layers which implicitly perform feature extraction. Then the
signal is fed into a fully connected layer followed by a
softmax layer for the classification. Other than in [1], in each
convolutional layer batch normalization [29] is performed
before the application of the activation function. This allows
for a more robust training irrespective of the variation in the
samples’ statistics. The final base network after the architec-
tural optimization is depicted in Fig. 4. In the architectural
search the number of convolutional layers, the kernel the
size, and size of the fully connected layers were optimized.

The network was trained by minimizing a standard cross
entropy loss function with a L2 regularization using an Adam
optimizer [30] with parameters β1 = 0.9, β2 = 0.999,
ε = 10−8. A standard learning rate scheduler is used which
decreases the learning rate after 170 epochs by a factor of
10 from λ = 10−4 to λ = 10−5.

2) Adversarial training: Adversarial training [31] was
originally developed to make a classifier more robust against
adversarial attacks. But it can also be seen as a smart
technique for efficient data augmentation with random noise.
In random noise data augmentation, for each training sample
x a number of perturbed samples x̃ = x+εη are added to the
training set where the same class label t as for the original
sample x is assumed. η ∈ [0, 1] is a uniformly distributed
random variable and ε is the noise scaling factor (e.g., in the
order of sensor noise). This data augmentation makes the
classifier robust against typical real world perturbations and,
hence, is a kind of regularization.

The trick in adversarial training is, instead of augmenting
with many random samples (which is very inefficient in high
dimensional input spaces), to only add the worst case per-
turbation r̃ ≤ |ε|, i.e., the one which changes the per sample
loss function E(x, t, θ) for training the classifier’s parameters
θ the most. The adapted loss function for adversarial training
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reads then

r̃(x, t, θ) = ε sign(∇xE(x, t, θ))

Ẽ(x, t, θ) = αE(x, t, θ) + (1− α)E(x+ r̃(x, t, θ), t, θ) ,

where α is a weighting factor for the contributions of the
original and adversarial sample and set to α = 0.5 for all
our experiments.

3) Monte Carlo dropout model: The Monte Carlo dropout
model (MC dropout) [32] is a recent method for efficient
Bayesian learning in deep neural networks. MC dropout
reinterprets in a variational inference scheme the usual
standard dropout as drawing samples of the network weights
W from an approximate posterior distribution p(W |X,T ) ≈
qφ(W ) given the training samples and labels (X,T ). The
resulting loss function for optimizing the parameters φ of the
approximator qφ(W ) is exactly the same as the loss function
for standard learning with dropout. But during prediction, the
dropout is kept switched on and for a given input x, multiple
runs M through the network are performed (each with a new
W ∼ qφ(W ) via dropout). This results in a Monte Carlo
approximation of the full Bayesian predictive distributions

p(t|x,X, T ) =

∫
p(t|x,W )p(θ,X, T )dW

≈
M∑
m

p(t|x,W (m)), with W (m) ∼ qφ∗(W (m)).

The exact Bayesian predictive distribution would represent
the correct prediction uncertainty, i.e., combined model un-
certainty and noise, and would not suffer from overfitting.
But the MC dropout approximation usually gives also better
prediction than the point estimate of standard non-Bayesian
deep learning. An important parameter is the dropout rate
which we optimize in the hyperparameter search. The num-
ber of runs is set to M = 100 for all our experiments.

Table II summarizes all architectural and other hyperpa-
rameters that are optimized via random grid search.

TABLE II
OPTIMIZED HYPERPARAMETERS FOR TACTNET-II

FCL size 512
kernel size 15x5

max pool size 10x1
dropout (MC-dropout) 0.80 (0.84)

batch size 36
regularizer L2, 10�3

learning rate 10�4 (10�5)
ε (adversarial) 0.1

B. Classification Results

1) Network comparison: Table III reports the accuracies
for the network architectures and training methods including
the original TactNet [1] on our new dataset with 36 materials
using the evaluation method as described in Sec. II-.3. For
the 1-sweep as well as for the 3-sweeps case, our extended
and by random grid search optimized base network performs
significantly (about 10 %) better than the original TactNet.
The advanced adversarial training and MC dropout training

methods further increase the accuracy by 0.8 % up to 86.3 %
in the 1-sweep case. This clearly proofs that tactile material
classification with the flexible tactile skin is feasible on
a large set of everyday materials and that the advanced
network architecture and training methods are the key to this
high performance. We name the new network architecture
TactNet-II. For the 3-sweep case, we use the Bayeisan fusion
scheme from Sec. II-.4 and the accuracy gets as high as
95.0 %.

2) Confusion matrix and grouping: The confusion matrix
C in Fig. 5 and its diagonal values show that some materials
are easier (e.g., the rubbers) and some are harder (e.g., the
leathers) than average to classify.

For further analysis, we use spectral clustering on the
confusion matrix C by setting the affinity matrix to A =
1
2 ((C − 1) + (C − 1))

T to get 6 groups of materials which
are ”confused the most” with each other. The materials are
then ordered such that for each group the materials in a group
have consecutive material IDs. Actually, this order is used in
all our figures including the Fig. 3 of the materials and the
Fig. 5 of the confusion matrix. In the latter, one can clearly
see that the hard to identify materials (especially the leathers)
get only confused with one another.

3) No overfitting: As is described in Sec. II-.3, the
standard deviations σ we report are computed via cross-
validation and represent the combined uncertainty due to
potential overfitting σover and due to the finite number of test
samples per fold σtest. According to Sec. II-.3, σtest = 1.4%
for TactNet-II and the 1-sweep case (with 36 · 20 = 720 test
samples). Comparing this to Table III, it is clear that there
is no additional uncertainty due to overfitting.

TABLE III
MATERIAL CLASSIFICATION PERFORMANCE

sweeps network type ā [%] σ [%]

1

original TactNet 73.1 1.8
base 85.5 1.5

adversarial 86.1 1.1
adversarial + MC dropout 86.3 1.2(TactNet-II)

3

original TactNet 86.2 2.2
base 94.3 1.5

adversarial 94.5 1.4
adversarial + MC dropout 95.0 0.9(TactNet-II)

C. Material Differentiation
In material differentiation, we want to learn a function

f(xa, xb) which takes two input samples xa and xb and
reports back 1 if both samples are from the same class, i.e.,
ta = tb, or 0 if they are from different classes, i.e., ta 6= tb.

For this, we adapt a Siamese network model [33] which
was originally developed in the context of one-shot learning.
The idea is, that both input samples are first independently
mapped into an abstract feature space and then a distance in
this feature space is computed between the input samples.
Finally, the distance is mapped with an additional network
to the decision probability for ”same” or ”different”.

Fig. 4 shows our Siamese network model for material dif-
ferentiation. The two sister TactNet-II networks are identical
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Fig. 5. Confusion matrix (upper) and its diagonal values (lower), hence, the
per class accuracy. For the latter, the order is from high to low accuracies.
All results are for TactNet-II and the 1-sweep case. The dashed line marks
the average accuracy of 86.3%̇ over all materials.

and pretrained from the classification task and their weights
are fixed. Only the weights of the fully connected layers
after the Euclidian distance layer are trained. We use the
contrastive loss function [34] and an Adam optimizer with
learning rate λ = 0.001 for 15 epochs (all other parameters
as in Sec. III-A).

D. Differentiation Results

For the performance evaluation of our material differen-
tiation network, we first perform the usual cross validation
split into test and training samples as described in Sec. II-
.3. Then, for each of the two datasets, we randomly generate
sets of material pair samples with an equal number of ”same”
and ”different” pair samples (3.6 · 104 samples for training
and 2.7 · 103 for testing).

Table IV reports the performance results. For the 1-sweep
case, the accuracy in material differentiation is about 5 %
larger than for material classification, showing that differen-
tiation is a simpler task. For the 3-sweeps case, we had to use
majority voting as the output of the Siamese based network
is not a proper probability distributions in a Bayesian sense.

Again, we are not suffering from severe overfitting as σ ≈
σtest, the uncertainty due to the number of test samples.

IV. HUMAN PERFORMANCE EXPERIMENTS

To have a benchmark for our robotic tactile sensor and
processing, we performed human performance experiments
for material classification and material differentiation. Fifteen

TABLE IV
MATERIAL DIFFERENTIATION PERFORMANCE

sweeps ā [%] σ [%]
1 91.8 0.9
3 95.4 0.9

human subjects, eight males and seven females with age
between 21 and 49 years, agreed to participate in the ex-
periments. All participants were tested to have normal touch
tactile sensitivity using the ”Touch-Test Sensory Evaluation”
from North Coast Medical (www.ncmedical.com).

As in the robotic case, also the human subjects should only
use tactile information by sweeping a finger over the tubes
but no other sensorial cue. For this, we used the experimental
setup in Fig. 1: the tubes are presented to the human subject
behind a curtain to remove the visual cue. In addition, the
subjects had to wear ear protectors to remove the auditorial
cue as it turned out that humans can hear for some materials
the material identity while sweeping their finger over it.

For each subject, the experiments were conducted on two
days, on the first day the material classification and on
the second day the material differentiation experiment. All
experiments were conducted by the same investigator.

A. Material Classification
The experiments consisted of a training and a testing

phase. In the training phase, the subjects had 10 min to get
familiar with the materials by touching and sweeping over
material samples attached to small plates. During this phase,
the materials had to be grouped in five to seven groups
according to their subjective tactile similarity. This should
help later when performing the tactile classification task. All
subjects reported that the 10 min for this phase was more
time than they needed. This might have been because our
set of materials consists of everyday household materials
the subjects were already familiar with. During the training
phase, the visual cue could not be excluded as the subjects
had to see where to find the material samples and had to
reorder them.

The testing phase consisted of three directly successive
sub-phases for each material:

1) Sweep once over the presented tube and decide for the
material class by looking at the previously grouped
material sample plates and telling the number written
on them.

2) Sweep three times over the tube in both directions and
decide again by looking at the sample plates for the
material class.

3) Sweep ones more over the tube and decide by sweep-
ing over the material samples for comparison by touch.

During testing, each material was presented to the subject
once, but the subjects were not told about this, and the
order of the materials was random. The overall time of an
experiment was at maximum 45 min.

B. Classification Results
Fig. 6 reports the accuracies of the human experiment

averaged over all subjects in comparison with the robot
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Fig. 6. Human vs. robot material classification accuracy. The depicted
standard deviation for the human experiment for the case of the N = 15·36
overall samples is computed in analogy to σtest in Sec. II-.3.

performance. The human performance is dramatically worse
than the robot performance. Even the 1-sweep robot accuracy
is 40%̇ higher than the ”3-sweep and compare by touch”
accuracy of the human. To make the task even simpler, we
also report the accuracy for identifying at least the correct
material group which the subjects formed individually in the
training phase. But even this accuracy is still about 30%̇
worse than the one of the robot for the way harder 1-sweep
class identity task. For completeness, Fig. 6 also reports the
robot’s performance in identifying the correct group using
the groups from Sec. III-B.2.

Fig. 7 shows the confusion matrix and the accuracy for
each material class. Comparing this to the robot results in
Fig. 5 shows that for every single class, the robot reaches at
least human accuracy.

This surprisingly bad human performance is compatible
with the statements of almost all human subjects: after the
training phase (in which they could see the material samples
while touching them), they expected the classification task
to be way easier than they judged it after they had actually
performed the experiment (but were not told about their
performance). One explanation for this initial overrating of
their tactile capabilities could be that humans almost always
use additional visual cues to prime their tactile expectation.

C. Material Differentiation

Due to the high number of
(
36
2

)
= 630 possible material

pairings, an exhaustive evaluation of the material differ-
entiation performance in a study with human subjects is
prohibitive. Therefore, to get at least a lower bound for the
material differentiation performance we selected the eight
hardest to differentiate material pairs. To have a fair set of
the hardest pairs, we selected the four hardest pairs for the
human and the four hardest pairs for the robot using the
following two criteria based on the classification confusion
matrices:

1) The hardest materials are the ones which have the
smallest on-diagonal value.

2) The hardest materials are the ones which have the
highest off-diagonal value.

For each criterion, we selected two materials from the robot
and human confusion matrix. Because one material pair was
the same for the robot and human case, only seven actual
pairs were used in these experiments: (0, 1), (12, 7), (16, 10),
(10, 14), (9, 10), (11, 12), (4, 8). These seven material pairs
are made up from 11 different materials. In the experiment,
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Fig. 7. Confusion matrix (upper) for the human performance experiment
and its diagonal values (lower) ordered from high to low accuracies. The
dashed line marks the average accuracy of 34.19%̇ over all materials.

we presented the human subjects an equal number of those
”different pairs” and of ”same pairs” made up from the same
11 materials.

In this experiment, there was no training phase, but the
subjects were allowed to make them familiar with all material
samples again. The subjects were not told that only pairs
from a subset of the materials will be presented to not bias
their decision.

In the testing phase, a pair of tubes was presented to the
subjects behind the curtain. Each presentation had two sub-
phases:

1) Sweep once over each tube of the given pair and decide
and say if the materials are the same or different.

2) Perform two additional sweeps in both directions over
the first and then two sweeps over the second tube.
Finally, it was allowed to sweep once more over the
first tube before the decision had to be made.

Each of the ”different pairs” were presented twice and an
equal number of the ”same pairs”. The presentation order
of the these pairs was random. The overall time of an
experiment was at maximum 45ṁin.

D. Differentiation Results

Fig. 8 reports the human accuracy for the differentiation
task in comparison to the robot performance for the selected
hardest material pairs. To show that this accuracy is a lower
bound for the accuracy computed over all pairs, also the
robot accuracy for all pairs is depicted.
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Fig. 8. Human vs. robot material differentiation performance. The ”hard”
results are for the selected seven hardest material pairs whereas the ”all”
result is for all possible material pairs.

The robot clearly outperforms the human in material dif-
ferentiation, although by a smaller margin than for material
classification. An interpretation of this finding could be that
the human raw sensorial and low level processing tactile
performance is good but that human tactile memory is not
well trained. It would be interesting to repeat the experiments
with a blind subject which is more dependent on its tactile
performance.

V. CONCLUSIONS

In this paper, we have shown for the first time that for
the higher level tactile material classification task as well
as for the low level material differentiation task, a robot
equipped with a flexible and tactile skin can exceed human
performance, hence, reaches superhuman performance.

First, we introduced a new tactile dataset with 3600
overall samples from 36 everyday household materials. We
made this dataset publicly available [26]. Then we presented
our new TactNet-II deep learning network which is based
on TactNet [1] but is extended with recent architectural
enhancements and training methods. TactNet-II reaches an
accuracy for the material classification task as high as 95.0 %.
For material differentiation we used TactNet-II as a building
block in a Siamese-like network architecture and reach an
accuracy as high as 95.4%̇.

Finally, we performed a thorough human performance
experiment with 15 subjects. In the material classification
task, the humans performed poorly with an accuracy of at
least 30%̇ lower than the robot. For the low level material
differentiation task the human performance was still signif-
icantly lower than the robot performance, but by a smaller
margin.

In future work, we will concentrate on sample efficiency,
i.e., using as little training samples as possible.
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