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Abstract— We present a new method for multi-contact motion
planning which efficiently encodes internal dynamics of the
robot without needing to use full models. Our approach is based
on a five-mass model which is formulated by Cartesian points
instead of joint angles. We solve direct optimization problems
which include distance constraints between these points, New-
tonian equations and integration constraints. We consider a
given rhythm of contact switches but leave the phase-timings
and contact positions free inside the optimization to provide
more flexibility. Due to simpler equations and sparser problem
structures, we can achieve very short optimization times in the
order of few hundred milliseconds, which make the method
suitable for application of online model predictive control.
Aside from contact position and time adjustment properties,
we can include precise foothold regions and synthesize dynamic
motions by taking internal dynamics and momentums into
account.

I. INTRODUCTION

Planning multi-contact locomotion in unstructured envi-
ronments involves various challenging tasks, ranging from
perception, environment modeling, motion planning and
compliant control. Despite well-established techniques for
different blocks in this complex pipeline [1], [2], the planning
part is yet time-consuming and computationally slow com-
pared to human locomotion. The underlying complexity has
different folds: limited foothold locations, robot’s floating-
based dynamics, unilateral frictions, reachability constraints,
collisions and planning the sequence of contacts. These
complexities produce a very complex mathematical problem
in case all mechanical details are considered. Solving such
problem for a simple task of sitting down on a chair may,
in fact, take up to a few hours [3], [4]. However, it is
possible to speed-up this problem with different simplifica-
tions and achieve faster planning speeds while compromising
for certain features. Taking inspiration from state of the
art algorithms, we propose a simple formulation based on
a previously developed technique [5] based on molecular
modeling, that can improve dynamics of the motion in an ef-
ficient and meaningful way. Before introducing the proposed
method, we review the literature by identifying essential
challenges involved and discussing possible improvements.
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A. The curse of dimensionality

Humanoids or multi-legged robots have floating-based
dynamics described by (n+ 6) states where n refers to the
number of joints and 6 denotes the dimension of global states
which describe the position and orientation of the robot in
world-frame. Finding time-trajectories for all these degrees
of freedom produces a high-dimensional planning problem.
One of the simplifications widely popular in the literature
is to use single-mass models which could approximate the
overall behavior in slow motions [6]. In these models, one
can optimize all contact forces to produce a physically
meaningful Center of Mass (CoM) trajectory. However,
these forces produce a moment on the body according to
Centroidal dynamics [7]. Enforcing the resulting angular
momentum rate to zero is possible, but it is more natural
to associate it with whole-body inertia like [8] (shown in
Fig. 1A). This simplification is close to reality if the legs are
light-weight compared to the main body, e.g., in quadruped
robots like ANYmal [8]. However, in many humanoid robots
including Coman [9], the legs and arms are comparably
heavy.

B. Simplified dynamics, full kinematics

Simplified models can speed-up calculations by reducing
problem dimensions. However, they possibly over-simplify
fast motions and especially dynamic effects induced by
heavy limbs. To mitigate this problem, it is possible to
plan end-effector and CoM trajectories in Cartesian space
for a simplified model, and match it kinematically with
the full model (shown in Fig. 1B). Mordatch et al. [10]
converted such abstract trajectories to joint angles via inverse
kinematics. By feeding the resulting joint angles into a full
dynamics model, they were able to find the whole-body
momentum rate which was then constrained to be equal to the
abstract momentum rate. In their approach, there is no need
to explicitly include individual joint angles and contact forces
in the optimization. These variables are directly calculated
from the Cartesian trajectories through inverse kinematics
and inverse dynamics respectively. Mordatch et al. used soft
constraints to enforce dynamic equations originally [10].
However, Dai et al. included the contact forces explicitly
and used hard constraints [11]. These methods assume no
limitation for the joint torques which significantly reduces
the number of inequality constraints needed. They also need
very efficient kinematic solvers, possibly in closed-form,
which could be iteratively used inside bigger optimizations.
Herzog et al. also used a similarly decoupled dynamic-
kinematic approach and achieved faster optimizations with
more efficient solvers [12].
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Fig. 1: Different template models used in the literature: A) A single mass and inertia with kinematic length constraints [8], B) Centroidal dynamics with full
kinematics [11], C) the proposed five-mass model with stretchable limbs, D) same as previous, but representing inertias with two masses, E) a nine-mass
model with elbows and knees and F) the full robot COMAN [9]. The borders in B) indicate that the simplified Centroidal dynamics match with the full
system by using full kinematics.

C. Trajectory parameterization

Due to nonlinearity, it is very common to use splines to
encode trajectories over time. This can be done for joint
positions [4], Cartesian positions [10] and even contact
forces [8]. However, it requires binding trajectories together
at regular intervals via kinematic and dynamic constraints
[8]. An alternative is to define all variables at every time-
sample and link them via integration constraints [11]–[13].
This gives more flexibility in the design of trajectory shapes
but increases the dimensionality of the problem. A vast
part of literature also aims at optimizing transition postures
only, which further simplifies the spline method [14]–[17].
Although these methods may potentially be faster from a
computational point of view, they are prone to producing
quasi-static motions.

D. Fixed contact sequences

Given reachability constraints and environmental complex-
ities, finding a kinematically and dynamically feasible set of
contacts is not always trivial. The Linear Inverted Pendulum
(LIP) model [18] can provide closed-form equations which
enable for online Model Predictive Control (MPC) in flat-
ground walking conditions [19], [20], but it is too limited
for multi-contact locomotion. Without considering dynamical
consistency, it is possible to perform a faster kinematic
search for footstep locations and orientations in a first stage.
Rapidly-exploring random trees can achieve reasonable plans
with simple distance constraints [14], [17] and energy-based
cost functions [21], but these approaches are also limited to
bipedal walking. A library of recorded human motions can
give a good initial guess [22]. However, the generalization
to different environments remain a challenge. Hauser et al.
proposed a graph search method in the first stage to find
a path of (kinematically) adjacent nodes spanning between
the start and end points [6]. The second stage in their
algorithm then fixed dynamic consistencies. It is possible
to link them back after computing them separately [16],
but at the cost of increasing computations in mixed-integer
optimizations. However, extraction of convex hulls in the
environment to represent supporting surfaces would allow for
contact adjustment and result in faster optimization problems

[15]. Given a simple environment model represented by such
convex hulls, one can use mixed-integer convex optimization
to find bipedal walking footholds [23] or more complex
multi-contact motions [24]. The approach presented in [23]
tackles kinematics and dynamics separately in different opti-
mization stages while [24] combines both in a single mixed-
integer optimization. Depending on the number of existing
support surfaces, the discrete search problem may grow in
size exponentially.

E. Emergent contact sequence

To find more elegant contact sequences with dynamic
consistency and flexible timing, Mordatch et al. introduced
the Contact-Invariant Optimization (CIO) approach [10]. To
explain it briefly, consider a single contact point of the robot.
Without any assumption on the phase sequence or timing
for this point, it is possible to minimize the multiplication
between the present contact force and the distance (to the
adjacent environment surface) at each instance of time. When
the distance is zero, the algorithm is allowed to increase the
contact force while it is forced to zero when the distance is
non-zero (i.e., a swing motion). Both contact positions and
forces are indeed explicit optimization variables. While this
method was initially formulated with soft constraints in [10],
Posa et al. used complementarity constraints and formulated
the problem with hard constraints which allowed for sliding
contacts as well [13]. This formulation was later used in [11]
to produce arbitrary contact sequences for different tasks
on the Atlas robot. A more restrictive alternative to this
flexible approach is to look at each contact individually. The
sequence of each contact is fixed, swing and then stance
and vice versa. Winkler et al. assumed the same number of
switches for each contact and hard-coded the trajectories in
each phase with splines [8]. This approach considers variable
phase durations per contact point which sum up to the same
total motion duration determined beforehand. This approach
allows for arbitrary contact sequences like the CIO method,
but with a predetermined number of contact switches.

F. Environment complexity

We mentioned that representing the environment with
simple convex-hulls is useful in discrete search methods [17],
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[23]. The approach presented by Winkler et al. [8] combines
all these surfaces and approximates them with a smooth
height-map which allows for continuous optimizations. How-
ever, in case of large gaps or restricted footholds, a good
initial guess is needed to avoid converging to local minima.
Mordatch et al. calculated a soft distance-to-surface measure
in the CIO method to consider environment complexities,
but their simulations were restricted to flat-ground or stair-
climbing cases and not traversing huge gaps. A similar
limitation also appears in the approach of [11] and [13]
where the contact sequence in restricted foothold cases or
monkey-bar scenarios might be pre-determined. Therefore,
the CIO approach and the alternative proposed in [8] are
probably powerful in finding emergent behaviors in simple
environments, but more prone to local minima in complex
terrains.

G. Rooms for improvement

As discussed so far, popular approaches proposed in the
literature might share certain positive aspects, but they might
be limited from other perspectives. An ideal planner should
be able to re-plan the motion online within a few millisec-
onds and ideally adjust the timing, contact locations and even
contact surfaces which involve discrete decisions. Besides,
it is expected to generate dynamic and fast motions by
considering robot dynamics. Most of the methods proposed
in the literature cannot reach such time performance due to
many reasons. The mixed-integer nature of the problem is
probably the most restricting factor. Additionally, although
simplified models speed up the problem, they cannot produce
dynamic motions for robots with heavy limbs unless the
full dynamics model [3] or the kinematic model is used
[10]–[12]. Consider Fig. 1 which summarizes the important
modeling methods used in literature. The single mass-inertia
model of Winkler et al. [8] is shown in Fig. 1A together
with the decoupled dynamic-kinematic approach of [10]–[12]
shown in Fig. 1B. These approaches speed-up simulations
considerably compared to using the full model [3] shown in
Fig. 1F. However, it is possible to elaborate the simplified
model slightly to better account for internal body dynamics
in fast motions.

H. Contributions, novelties

In this paper, by splitting the modeling and discrete search
challenges apart, we only focus on the simplified model
and propose a method to improve the performance from
this perspective. We restrict the study to finding dynamic
trajectories and use a predetermined contact sequence. We
also use simple collision avoidance techniques and do not
consider possible knee/elbow contacts with the environment.
We propose a simple five-mass model with a torso and four
limbs to represent different body parts shown in Fig. 1C.
Using a previously developed optimization technique [5],
we set up a motion planning problem with contact forces,
phase times, end-effector, pelvis and mid-shoulder positions
as main variables. These trajectories are bound together with
dynamic equations, geometric length constraints, reachability

constraints and contact friction cones. We show that our
method can plan dynamic multi-contact motions in the
order of few hundred milliseconds with adjustable contact
location and phase timing properties. Although we use a
predefined contact sequence which could be the outcome
of human motion libraries [22], random search [14], [17],
[21] or mixed-integer problems [23], the novelty of our
method lies in the new simplified model which could be
used in many other optimization problems as well. It can
efficiently describe internal robot dynamics while allowing
for implementation of reachability constraints. Despite using
time-integration to parametrize trajectories instead of splines
which are probably more efficient, we show that we can
achieve fast optimization times comparable to single-mass
simplified models. The next section describes the model and
optimization formulation in details. Next, we demonstrate
results over different planning scenarios and analyze the
performance from various perspectives. Finally, we conclude
with a discussion of advantages and limiting factors as well
as future directions for potential improvements.

II. PROBLEM FORMULATION

We start this section by introducing our simplified mechan-
ical model. This model is directly formulated with Cartesian
position variables instead of joint angles. In a previous work
[5], we discussed that such modeling technique is popular
in computational chemistry to calculate complex molecular
conformations. Despite different scales of mechanical forces
in humanoids versus molecules, the overall geometries have
important similarities, especially the tree-like topology and
the fixed-length constraints between points. In [5], we for-
mulated a posture optimization problem in which world-
frame positions of skeletal joints were the main variables
instead of actual joint angles. We considered a mass and
inertia for each limb which spans between two adjacent
Cartesian points, constrained to have a fixed length inside
the optimization. Compared to joint-space models, this new
formulation is sparse and mathematically less complicated.
Therefore, optimizations of arbitrary multi-contact postures
could be done with better convergence properties and up to
ten times faster with the new formulation [5].

In the present work, however, we use a simpler five-mass
model (shown in Fig. 1C) for motion planning. This model
is derived from a nine-mass model similar to the humanoid
anatomy (Fig. 1E). Also, the inertias we assume for each
body segment are equivalent to splitting the mass into two
half-masses shown in Fig. 1D. We consider stretchable limbs
in the robot where masses also change location along the
limb proportionally. More formally, we assume there are two
ideal prismatic (massless) actuators on both sides regulating
the entire limb length proportionally. We use a fixed length
for the torso segment and restrict limbs to a certain range to
approximate the effective workspace. The upper limit of this
range encodes reachability constraint while the lower limit
prevents self-collision.
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Fig. 2: Demonstration of a single limb in the robot with internal forces f (t)
and τ(t), and external forces F(t). This limb could be one arm for example
without hands, where the vector b(t) is shoulder position and the vector
p(t) is contact position both expressed in the world-frame w. The surface
can be approximated by a circle at position P, normal vector N and radius
r. The friction cone of this contact is also described by a coefficient µ .

A. Model formulas

To derive the equations, consider Fig. 1D. As mentioned
earlier, we consider mass and inertial for both limb segments
(upper arm and forearm as well as thigh and shank seg-
ments). Since in human [25] and our robot COMAN [19],
transversal moments of inertia in each limb segment are
much smaller than sagittal and longitudinal, and since the
last two components are almost the same, we approximate
each limb segment by two half-masses. This is equivalent
to considering only two nonzero diagonal elements in the
inertia matrix. Consider one limb of the robot shown in Fig.
2 which attaches to the main body at point b(t) (representing
the pelvis or the mid-shoulder point), and creates contact
with the environment at point p(t). To improve readability of
the paper, we avoid using indices for individual limbs. In our
simplified model, we only consider contact forces F(t) and
not wrenches. We leave this actuation possibility (realized
by ankle and wrist joints) to a lower-level inverse-dynamics
algorithm for a better track of the simplified trajectories. We
also assume point-contacts which ideally prevent transversal
moments. However, the proposed optimization framework
is ideally able to consider all these moments and include
constraints to ensure their feasibility with respect to the
foot/hand size. Coming back to Fig. 2, further assume that
internal forces f (t) and torques τ(t) are applied to the limb
at point b(t). We denote segment masses by m, lengths by
l, relative mass positions by 0 ≤ u ≤ 1 (refer to Fig. 2),
and sagittal and longitudinal inertias by i. Splitting the half-
masses by δul around the actual mass location, one can
obtain:

δul =

√
i

ml2 (1)

Individual limb segments are identified by subscripts 1 and
2. It is obvious that the overall limb length L and mass M

are:

L = l1 + l2, M = m1 +m2 (2)

The overall relative limb mass location U is:

U =
m1u1l1 +m2(l1 +u2l2)
(l1 + l2)(m1 +m2)

(3)

and the overall inertia around this mass is calculated by:

I =
m1

2
(UL− (u1−δu1)l1)2

+
m1

2
(UL− (u1 +δu1)l1)2

+
m2

2
(UL− l1− (u2−δu2)l2)2

+
m2

2
(UL− l1− (u2 +δu2)l2)2 (4)

which could be described in the simplest form as:

I = i1 + i2 +
m1m2

m1 +m2
((1−u1)l1 +u2l2)2 (5)

Now, having L, M, U and I as a function of individual
segment properties, we can define x(t)= p(t)−b(t) and write
Newton equations:

F(t)+ f (t)+M[g−Uẍ(t)− b̈(t)] = 0

τ(t)+ x(t)× [(1−U)F(t)−U f (t)− I
|x(t)|2

ẍ(t)] = 0 (6)

These equations describe normal rigid body dynamics. We
use |x(t)| = L which is valid for the torso, since such
constraint is explicitly included in the optimization. For
other stretchable limbs, although |x(t)| is variable in the
range Lmin ≤ |x(t)| ≤ L, we still use |x(t)| = L which is
an approximation, but simplifies the symbolic equations
considerably.

The entire robot model is composed of five body segments
(torso + four limbs) whose properties are calculated as
described before. For each segment, we have to include
one equality or inequality in the optimization to control the
length. However, endpoint positions are all decision variables
in the optimization to be found. Note that in the pelvis
and mid-shoulder points, the sum of internal forces and
torques are zero. Therefore, we can combine all dynamic
equations of the limbs (i.e., the set of equations (6) for
each limb) and obtain the six usual Centroidal dynamic
equations. In the single mass models used in [10]–[12], CoM
and end-effector positions, as well as contact forces, are
optimization variables. The extra computational cost of our
model is only replacing the single CoM position with two
pelvis and mid-shoulder positions. The rest of six Centroidal
dynamic equations remain present. The advantage of having
individual limb dynamics is that end-effector movements can
now directly influence the six equations, whereas the ap-
proaches in [10]–[12] implicitly create this linkage between
the inverse kinematics and the full dynamical model. In these
approached, more precision could be obtained at the cost of
more calculations. We avoid including all the model details
in this section for the sake of readability and only provide
our optimization problem in abstract form.
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B. Optimization setup

As mentioned, we use a predefined contact sequence in
our planning scenarios. The sequence naturally starts from a
given state and ends in a terminal posture. The environment
is also modeled by contact surfaces given in circular shapes
with certain positions P, radius r and normal vectors N sim-
ilar to [14] (refer to Fig. 2). The sequence also involves the
rhythm of contact changes while directly assigning contact
points in the robot to those contact surfaces. The optimization
can then find dynamically consistent end-effector position
and force trajectories, proper contact locations inside the
surfaces and variable phase durations. We divide the motion
into M phases in which both the upper and lower limbs
either perform a swing motion or establish a contact and
receive supporting forces from the environment. Each phase
is divided into K sub-phases which aim at providing a good
resolution for dynamic and kinematic constraints. Sub-phases
(indexed by i where 1≤ i≤MK) have variable durations hi
encoded as optimization decision variables which all sum
to MT . Here, the parameter T represents an average phase
duration and determines the frequency of motion. Exact
phase durations hi are not forced to be exactly equal to
T however. End-effector, pelvis and mid-shoulder positions
p j

i and velocities ṗ j
i (where 1 ≤ j ≤ 6) are also decision

variables at the beginning of each sub-phase. Therefore,
trajectories are formed by time-integration constraints over
individual sub-phases which form a direct optimization setup
[13]. The contact points are free to move inside the contact
circles, and contact forces F j

i should lie inside friction cones.
We also define accelerations by differentiation of velocities
hi p̈

j
i = ṗ j

i − ṗ j
i−1. Altogether, the optimization setup is as

follows:

min
hi,p

j
i ,ṗ

j
i ,F

j
i

∑
i, j

hi p̈
j
i

2 +hiF
j

i
2 +H(p j

i ) (objective)

s.t.

∑hi = MT (motion duration)
Γ(pi, p̈i,Fi) = 0 (dynamics)

Lmin ≤ L(pi)≤ Lmax (kinematics)
G(p0, ṗ0) = S0 (initial condition)
Contact phase:

p j
i ∈ S(Pk,Nk,rk) (circular surfaces)

F j
i ∈ F(Pk,Nk,µk) (friction cones)

ṗ j
i = 0 (no sliding)

Swing phase:
F j

i = 0 (free swing)
hi ṗi = pi− pi−1 (time integration)

C(pi+[K
2 ]
)≥ 0, i mod K = 0 (collision) (7)

Here, S0 is the initial state. The vectors pi and Fi contain
individual quantities p j

i and F j
i . The function G(.) maps

Cartesian points to a given state and L(.) encodes length
constraints. The vectors Lmin and Lmax simply contain limb
length constraints. For the torso length, the corresponding

elements are set to be equal to implement an equality
constraint. The function Γ(.) encodes dynamic equations (6)
for each sub-phase i, F(.) denotes friction cones and S(.)
denotes contact circles. In practice, we define accelerations
by a direct differentiation of velocities and thus, exclude
them from the list of optimization decision variables. Zero
velocities, accelerations and forces are also defined paramet-
rically to make the optimization faster.

We normalize forces and accelerations by total mass and
gravity in the objective function. The function H(p) =−ẑT p
is only applied to the mid-shoulder point to lift the robot
up and make the motion more energy optimal. The vector
ẑ denotes world-frame vertical direction. Since we do not
have knee joints in our five-mass model, we cannot minimize
knee torques to naturally lift the robot up [5]. In a previous
work [5], where we optimized postures with a more complete
model that had knee joints, we showed that such lifting term
could produce similar postures compared to a setup in which
only a torque-minimizing objective was used. Alternative
approaches to avoid collapsing are constraining end-effector
positions in certain limited regions with respect to the body
[8], relying on initial trajectories [12] or using nominal knee
angles [11].

The collision function C(.) simply makes sure that the
mid-trajectory end-effector positions always lie on one side
of both starting and ending contact surfaces. More precisely:

C(p) =
[
(p−P−)T N−

(p−P+)T N+

]
− c (8)

where superscripts − and + represent starting and ending
contact surfaces for the corresponding swing phase. The
scaler c= 5% of leg length also indicates a desired amount of
ground clearance or leg lift for the swing trajectories. Finally,
we start optimizations by an intuitive (possibly infeasible)
initial solution where hi = T , swing trajectories connect the
centers of contact surfaces together, velocities are differen-
tiations of these positions and contact forces are set to the
total weight divided by the number of active contacts in each
phase. The optimization therefore adjusts all these variables
optimally. We use the package CasADi [26] to formulate our
problem with automatic symbolic differentiation and solve it
via IPOPT [27].

III. RESULTS

In this section, we study the optimization results for dif-
ferent motion planning tasks. We consider changing terrain
complexity, planning horizon and trajectory precisions. In all
experiments, we keep the motion sequence fixed, i.e. we use
the same order of limb motions all the time. This sequence
is set to move one limb at a time, although it could be easily
generalized to moving arbitrary number of limbs and even
going to flight phases.

A. Swing dynamics

As motivated previously, the aim of using a five-mass
model in our method is to study the exchange of energy
between the base (torso) and the limbs. In another work
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[28] we showed that in bipedal walking motions, swing
and torso balancing dynamics can influence torso motions
mainly by reducing the speed. Mechanically, a transfer of
kinetic energy from the torso to the limbs enables them to
move, but slows down the torso itself. Single-mass models
cannot include this phenomena in optimizations [8] while
Centroidal dynamic approaches require inverse kinematics
and full-body momentum equations to produce dynamically
consistent motions [10]–[12]. Our method can easily model
this phenomena while reducing the complexity and consider-
ably speeding up optimizations. Depending on the frequency
of motion and the robot properties, this exchange of energy
might become important. In other words, Cartesian motions
that ignore swing dynamics might only be realizable on
robots with lightweight limbs [8]. Otherwise, the choice of
frequency should be slow enough to allow for a feasible
tracking of Cartesian trajectories with inverse kinematics or
dynamics. Fig. 3 demonstrates an example of motion where
limb-swing dynamics can influence torso motions to some
extent. One can observe in Fig. 3B that torso velocities are
generally decreased when the limbs start moving.

The scenario in Fig. 3 is of particular interest, because
the torso almost has to stop in order to move hands. In such
flat terrain conditions, ideally, the robot does not need to use
hands at all. However, since the rhythm of motion is fixed
and given, the planner cannot skip hand-support phases and
let the robot naturally walk. It is also not able to shorten
these phases, because by design, the hands cannot just move
constantly with the body and instead, they have to stop at
corresponding contact surfaces for some time. Consequently,
because of the lifting terms which bring the legs to their
maximum length, the robot cannot keep both feet in contact
and move the torso with a high velocity forward. One of
the limbs may geometrically violate its reachability limits
during double-feet support. As a result, the torso almost stops
completely when the arms move. This is indeed the limitation
of our predefined motion sequence which requires stationary
hand positions and could be solved by deciding a different
sequence.

B. Static vs. dynamic motions

In the second test, we change the frequency of motion
and investigate the resulting trajectories. The frequency of
normal walking in a child with the same height as our
COMAN robot (approximately 90cm) is about T = 0.45s
[30]. Here, we consider two gaits of M = 12 steps with
different average phase durations of T = 0.3s and T = 0.7s.
As demonstrated in Figures 4 and 5, the choice of T = 0.7s
produces a slow motion with conservative contact forces and
non-smooth trajectories. The choice of T = 0.3s produces
forces that reach friction cone boundaries, but resulting in
smoother trajectories and similar limb acceleration patterns.

C. Optimization performance

In the final set of experiments, we change different
motion parameters and report the trends in optimization
performance. In particular, the horizon length M, trajectory
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Fig. 3: Planning M = 12 steps with a fine resolution of K = 7 and a
nominal phase duration of T = 0.7s. In this simple environment shown in
A), trajectories are rather simple, but limb swing dynamics influences the
torso velocity considerably. In B), we have shown absolute velocities for all
the five masses in our model. In this scenario, since hand-support surfaces
are placed slightly high, the elbows are normally bent which means the arms
hardly reach the boundaries of their workspace. On the other hand, because
of the lifting term, the legs are normally stretched and limited. Therefore,
when both feet are in contact, the pelvis and torso cannot progress much
because of such reachability constraints and thus slow down. This can be
seen in the accompanied video. The double-support duration is relatively
small in human walking as well [29]. When the two hands are fixed, the
pelvis and torso have more freedom to move, though leg-swing dynamics
influences their speed slightly.

precisions determined by K and motion dynamics deter-
mined by T have considerable influences on the optimization
performance. Table I lists different optimization setups to
investigate these parameters. It is observed that the number
of future steps almost linearly increases the optimization time
which is due to the sparsity of our technique similar to [24].
Increasing the number of sub-phases has a similar effect
according to Table I. Also, generating more static motions is
generally faster, since velocities and accelerations are small
in magnitude.
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Steps: M Avg. Durations: T Sub-Phases: K Terrain Variables Constraints Iterations Optim. Time Iter. Time Description
4 0.5s 4 Rough 431 606 25 0.12s 4.8ms Short horizon
8 0.5s 4 Rough 879 1254 23 0.29s 12.6ms Medium horizon
12 0.5s 4 Rough 1327 1902 27 0.52s 19.3ms Long horizon
12 0.3s 4 Rough 1327 1902 35 0.69s 19.7ms High frequency
12 0.5s 4 Rough 1327 1902 27 0.52s 19.3ms Natural frequency
12 0.7s 4 Rough 1327 1902 20 0.36s 18.0ms Slow frequency
12 0.5s 4 Rough 1327 1902 27 0.52s 19.3ms Normal gait
12 0.5s 7 Rough 2317 3258 35 1.39s 39.7ms High resolution
12 0.7s 7 Flat 2317 3258 32 1.21s 37.8ms Flat gait

TABLE I: Dimensions and performance metrics of different optimization setups. The first group of three experiments investigates the effect of horizon
length. The second group explores different gait frequencies. The third group also investigates the effect of motion resolution. Increasing the horizon almost
linearly increases the optimization time. Producing quasi-static gaits can be done faster. Increasing the resolution also linearly increases optimization time
which is slightly better for simpler environments.

A) Quasi-static motion T = 0.7s

B) Fast motion T = 0.3s

Fig. 4: Rough-terrain locomotion with different average phase durations.
With a choice of T = 0.7s, the robot spends more time in each phase while
with T = 0.3s, the motion becomes much faster. In this case, contact forces
are also less conservative and may reach friction cone boundaries.

IV. CONCLUSIONS

Similar to our posture planning work earlier [5], we
observe that representing geometries by Cartesian points
instead of joint angles can speed up motion planning op-
timizations as well. In the most complicated case, we have
M = 12 steps and K = 7 sub-phases which gives a total of
84 sub-phases and optimization time of 1.39s. In compar-
ison, the combination of Centroidal dynamics and inverse
kinematics used in [12] optimizes 100 sub-phases in 30s.
While this combination can account for swing dynamics in
fast motions, a reduced version without inverse kinematics
[24] can run much faster and optimize a static plan (of 4
steps in 8s duration and with 80 sub-phases) in 0.421s. Our
method, however, can find more dynamic motions in similar
optimization setups thanks to inclusion of internal dynamics
in the five-mass model. It also leaves the choice of sub-phase

A) Quasi-static motion T = 0.7s
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B) Fast motion T = 0.3s
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Fig. 5: Rough-terrain locomotion with different average phase durations
similar to Fig. 4. With a choice of T = 0.7s, absolute limb accelerations
follow a jerky pattern whereas with T = 0.3s, the motion is fast and smooth.
In this case, different limb accelerations follow similar patterns.

durations free in optimizations to find more optimal solutions
compared to [12], [24].

We only used an intuitive start point without any prior
knowledge. Running these optimizations with a warm start
in receding-horizon optimizations can be much faster and
allow for a reactive online control of up to 50Hz update rate,
depending on the horizon length and the desired resolution.
In the smallest setup, we can optimize M = 4 steps in
120ms while spending 4.8ms per iteration. For a typical
MPC control application with receding horizon, we might
only need up to 5 iterations which may take 20-25ms. This
convincingly extends our previous MPC controllers [19] for
bipedal walking which used the linear inverted pendulum
model and could adjust footsteps in 0.2ms. Comparatively,
with a cost of longer computations which is still much faster
than the normal frequency of motion (T = 0.5s), we can
optimize a much more complex multi-contact gait. We can
adjust contact positions, swing trajectories and phase timings
altogether. More importantly, we are not limited to linearity
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assumptions anymore.
Our method is able to produce motions with different

properties despite using a given fixed rhythm. It can also
adjust the timing of different phases in order to smoothen
trajectories. However, we consider using Cost of Transport
(CoT) terms in the objective function and remove the motion
duration constraint to naturally find an optimal frequency.
For online push-recovery applications which may require
activation or deactivation of certain contacts on the fly,
assuming that only few integer combinations are decided,
our method is potentially fast enough to be used in a mixed-
integer optimization solver. A possible scenario would be
receiving external pushes during locomotion while available
foothold regions are not enough to recover. In this case, the
robot may decide to use hands against the wall which is
a new discrete decision. We do not have a mixed-integer
optimization setup yet, but we plan to add this feature in
future work. Ultimately, we would like to integrate this
planner with a perception pipeline that extracts environment
geometries [1], and a compliant inverse dynamics controller
that provides precise and fast tracking [31].
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