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Abstract— Consider the task of grasping the handle of a
door, and then pushing it until the door opens. These two
fundamental robotics problems (selecting secure grasps of a
hand on an object, e.g. the door handle, and planning collision-
free trajectories of a robot arm that will move that object along
a desired path) have predominantly been studied separately
from one another. Thus, much of the grasping literature
overlooks the fundamental purpose of grasping objects, which
is typically to make them move in desirable ways. Given a
desired post-grasp trajectory of the object, different choices of
grasp will often determine whether or not collision-free post-
grasp motions of the arm can be found, which will deliver that
trajectory. We address this problem by examining a number of
possible stable grasping configurations on an object. For each
stable grasp, we explore the motion space of the manipulator
which would be needed for post-grasp motions, to deliver
the object along the desired trajectory. A criterion, based on
potential fields in the post-grasp motion space, is used to assign
a collision-cost to each grasp. A grasping configuration is then
selected which enables the desired post-grasp object motion
while minimising the proximity of all robot parts to obstacles
during motion. We demonstrate our method with peg-in-hole
and pick-and-place experiments in cluttered scenes, using a
Franka Panda robot. Our approach is effective in selecting
appropriate grasps, which enable both stable grasp and also
desired post-grasp movements without collisions. We also show
that, when grasps are selected based on grasp stability alone,
without consideration for desired post-grasp manipulations, the
corresponding post-grasp movements of the manipulator may
result in collisions.

I. INTRODUCTION

The planning of manipulator actions, that are necessary
for moving an object, have been predominantly been studied
as two separate problems in isolation: (1) detecting end-
effector poses which provide stable contacts between end-
effector parts and the object [1]–[3], known variously as
“grasp planning”, “grasp detection” or “grasp synthesis”; and
(2) planning post-grasp manipulative (PGM) movements [4].
Given a set of stable grasp candidates, some approaches plan
PGM movements in the presence of obstacles to deliver an
object to a desired target pose [5]. However, such methods
consider only the final destination pose as the task, and do not
address the more complex task of moving an object along
an entire desired trajectory or path. In contrast, it is often
necessary to achieve specific trajectories of manipulated
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Fig. 1. The Panda is tasked with inserting and rotating the cylindrical
peg into the cylindrical shell. The manipulator grasps the peg at 1 ((b))
which is suitable for rotating clockwise the peg π

6
[rad]. However, it is not

appropriate for inserting peg 0.15 [m] into the barrel. By contrast, while the
manipulator can insert the peg 0.15 [m] into the shell by grasping it at 2,
it is not able to rotate the peg clockwise because of the collision.

objects, because: (1) object movements may be constrained,
e.g. pushing a sliding door by its handle, or inserting an
object into a slot; or (2) we may require the robot to
execute motions that are learned from demonstrations, e.g.
by dynamic movement primitives. Here, we propose an
approach that computes a collision avoidance cost of the
desired PGM movements, and we use this cost function to
select the most useful choice from multiple possible stable
grasp configurations.

Planning an intelligent grasping configuration and post-
grasp movements in a cluttered environment include (i) G0
(reach-to-grasp): a manipulator approaches an object, i.e.
reach a door handle in the presence of obstacles; (ii) G1
(grasp synthesis): the manipulator makes stable contacts
on the object surface, called force-/form-closure grasping
configuration, e.g. grab the door handle; and (iii) G2 (post-
grasp manipulator movements): it moves the object and
delivers desired object movements, e.g. opening a sliding
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door.
Force-closure [6], or form-closure analysis [7] are classical

approach to compute stable grasping configurations based on
a 3-D model of an object. However, building 3-D model of
all unknown objects is not easy and may not be practically
feasible. State-of-the-art approaches efficiently compute sta-
ble grasping configurations (G1) from point clouds of a scene
with a high success rate (e.g. using a probabilistic learning
algorithm [2], artificial neural networks [1], [8], or efficient
geometric matching between hand and object parts [3]).
However, a manipulator may not be able to reach such
grasps, because it collides with obstacles during G0. Other
approaches therefore consider jointly planning G0 (planning
the reach-to-grasp) and G1 (grasp synthesis). Berenson [5]
stores a set of off-line computed grasping configurations
in a database and uses them in an online collision-free
G0 search. GraspRRT [4] simultaneously finds a feasible
grasping configuration (G1), solves inverse kinematic (IK)
and searches a collision-free reach-to-grasp trajectory (G0).
Adjigble [3] detects stable grasps, while also searching the
most stable grasps to find those that are reachable, in real-
time. Kitaev et al. [9] address this problem in a differently
way, using rollouts in physics-based simulation to grasp
the target object in a cluttered environment by pushing
obstructing objects aside, [10].

However, none of the above work address the different
problem of selecting grasps that will enable a desired post-
grasp manipulative trajectory of the target object, without any
parts of the robot or object encountering collisions. While
most stable grasp configurations will typically allow some
post-grasp manipulative movements without collision, these
may not include a specific desired G2 object trajectory.

In Fig. 1(a), the Panda can successfully push a peg into a
barrel if it grasps the peg at point 2 and moves it along
the black arrow. However, if it rotates the peg π

6 [rad]
clockwise, it will collide with the yellow cuboid despite
the existing collision-free movements of the peg. Therefore,
a synthesised grasping configuration may not permit the
robot to perform desired post-grasp movements. Although
G1 is mostly studied regardless of G2, some have studied
them jointly. For instance, [11], [12] studied the problem
of selecting a grasp configuration that yields minimum
manipulation torque effort and minimum impact force in case
of a collision. [13] presented an approach that exploits a
semantic and geometric understanding of a scene for task-
oriented grasping . This approach addresses the problem of
grasping an object according to its affordance. Likewise, we
propose an approach of selecting a grasp that yields collision-
free post-grasp manipulative movements.

The previous works [3]–[5], [9] addressed joint planning
of G0 and G1. Nonetheless, they did not consider post-grasp
movements of the manipulator for synthesising grasp config-
uration. The trajectory of an object is sometimes known prior
to the reach-to-grasp phase, e.g. welding metal parts, sealing
glasses to a frame, painting, or opening a sliding door. Hence,
the manipulator must plan a grasping configuration that
allows collision-free post-grasp movements. We, therefore,

present an approach of grasp selection (G1) by considering
collision of robot parts during a post-grasp manipulative
movement of the target object (G2).

The contribution of this paper is that we compute a
collision cost during G2 movements and use it to select a
grasp candidate (G1) with the minimum collision cost for
performing G2 movements. To show the effectiveness of our
approach, we perform three real manipulation experiments
with a real robot (“Panda” robot manufactured by FRANKA
EMIKA GmbH). The experiments include (1) push a peg in a
barrel, (2) rotate the peg in the barrel, and (3) pick-and-place
task. Our experimental results demonstrate that our proposed
cost effectively differentiates grasping configurations result-
ing in a collision. In a constrained environment, sample-
based approaches, which randomly explore the environment,
are very time-consuming. These approaches need more than
a few seconds to find a solution whereas our approach finds
a solution in a few milliseconds.

II. PROBLEM FORMULATION

Here we present an approach to synthesising grasp (G1)
taking into account obstacle avoidance during the desired
post-grasp movements (G2). Nevertheless, one can also use
another state-of-the-art grasp synthesising approach.

A. Learning and generation of grasps for arbitrarily shaped
objects

In this paper, we formalise the problem for parallel grip-
per which is originally presented in [2]. Nonetheless, the
formulation for arbitrary hand kinematics can be found in
original work, which proposes grasp models trained using
only a single demonstrated grasp on a single object and
computes grasping configurations for new objects of arbitrary
shape, extracted from 3D depth images. The surface features
x ∈ SE(3) × R2 consist of curvature r ∈ R2 and a local
frame attached to surface point rxg ∈ SE(3), where SE(3)
denotes the group of 3D poses (3D position p and 3D
orientation q). SE(3) = R3 × SO(3) and SO(3) ⊂ R3×3

denotes the group of rotations in three dimensions:

SO(n) = {R ∈ Rn×n : RRT = I, det(R) = +1}.

The object model is defined as a joint probability distribution
of a set of features, modelled as kernel density estimation:

O(rxg, r) =

K0∑
j=1

wjK
(
rxg, r

∣∣xj , σx) (1)

where wj ∈ R+ are kernel weights, and

K
(
rxg, r

∣∣xj , σx) = N3(p
∣∣µp, σp)θ(q∣∣µq, σq)N2(r

∣∣µr, σr)
µ and σ are the kernel mean and kernel bandwidth. N∗ is an
∗−variate isotropic Gaussian kernel, and θ is a Gaussian-like
distribution in SO(3).

Contact model pdfMi (u, r) encodes the joint probability
distribution of surface features and of the 3D pose of the ith
hand link, where uij = v−1j ◦ si, si and ◦ denote the pose
of link Li (i = 1, 2, 3, representing two fingers and a palm
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of end-effector) and the composition operator. The contact
model of link Li is

Bi(u, r) =
1

Z

K0∑
j=1

N3(p
∣∣µp, σp)θ(q∣∣µq, σq)N2(r

∣∣µr, σr)
(2)

where Z ∈ R+, uij = (pij , qij) is the pose of link Li relative
to the pose of vj of the jth surface feature.

Query density Qi is a density over possible ith link
poses s given a new object point cloud. Qi is computed
by convolving the corresponding contact model Bi with a
new object point cloud O.

Qi(s) '
KQi∑
j=1

wijN3(p|p̂ij , σp)θ(q|q̂ij , σq) (3)

To generate a grasp for a new object, a finger link is
selected at random, and a link pose is sampled from the
query density. Hence, the corresponding hand configuration
is determined by hc = FK(rxg, hi) where rxg is the poses
of the end-effector and hi, is the pose of Li, i = 1, 2, 3. We
now compute the likelihood of a grasp using the kernels

LQ(hc) =
∏
Qi∈Q

Qi (FK(rxg, hi)) (4)

where FKi denotes the forward kinematics corresponding to
ith link of the hand. The objective of grasp optimisation is
to find a grasp that maximises the product of the likelihood
of the query densities and the hand configuration density[

rxg, h̄i
]

= argmaxL(hc) (5)

We compute the kernels based on an available example of a
successful grasp. Then, we sample a set of grasp candidates
from the kernels using eq. (4). In the next section, we study
this set of grasp candidates and analyse them to find which
one results in collision-free post-grasp movements.

B. Post-grasp movements (G2) and obstacle avoidance

We consider reference frame xr ∈ SE(3) (the black frame
in Fig. 2). Frame rxg ∈ SE(3) (in eq. 5) is attached to the
end-effector at each time (shown with blue thick frames).
We use operational space trajectory to refer to successive
poses of this frame that correspond with a sequence of
poses attached to the centre of mass of the object rxc =
{roc, xc, yc, zc}. rxc(t) = {rtc(t),rRc(t) ∀ 0 ≤ t ≤ T} de-
fines a desired trajectory for the object, t denotes a time and
tf is time-to-completion for the manipulative movements,
rRc(t) is rotation matrix from rxc(t) to xr, and rtc(t)
represents translation of rxc(t) expressed in xr. We assume
the object is non-deformable. Hence, when the robot comes
into contact with the object, a trajectory of the corresponding
end effector pose at grasping configuration can be expressed
based on rxc and a fixed transformation from rxg into rxc,
as follows:

rRg(t) = rRc(t)
cRg

rtg(t) = rtc(t) + rRc(t)
ctg

. (6)

xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)xg(t0)

zg(t0)

yg(t0)

xc(t0)

yc(t0)

zc(t0)

xc(tf )

yc(tf )

zc(tf )

xr

yr
zr

xg(tf )

zg(tf )

yg(tf )

Fig. 2. An object is shown in global coordinate frame xr =
{or, xr, yr, zr} at initial and final time (t0 and tf ) in the left and right side
of the figure. Local coordinate frame rxc = {oc, xc, yc, zc} is attached to
the centre of mass of the object, shown in red colour. This frame follows
trajectory rxc(t) shown with green line during manipulative movements.
The blue frame rxg = {og , xg , yg , zg} represents a coordinate frame
corresponding with a end effector pose of one feasible grasp configuration
at time t0 and tf

where cxg = {cRg,
c tg} are rotation and translation from

rxg to rxc, respectively. We consider the trajectory for object
movements, namely rxc(t), is known, e.g. moving/opening a
sliding door. Hence, for each grasping configuration, namely
cxg , the operational space trajectory of the end-effector,
namely rxg(t) = {rtg(t),rRg(t)}, is fixed and can be
computed using eq.(6), i.e. rxg = rxc

cxg . An IK algorithm
is then utilised to compute the corresponding joint space
trajectory of the manipulator as follow:

q(t|rxc, cxg) = IK (rxg(t)) (7)

where the vertical line in f(y|x) mean f is a function of
y given x. In eq. (7), q(t|rxg) = {qi(t) | qi(t|rxg) ∈
R, i = 1, ..., nq} at each time step and nq is the number of
joints

We consider some body points attached to manipulator’s
links ( bj = {bj,1 ∈ N, bj,2 ∈ R} where bj,1 denotes the
link number to which the body point is attached and bj,2
represents the corresponding distance between the jth joint
and the body point.), e.g. one body point is attached to every
joint and one is attached to the middle of every link. Thus,
the trajectory of each body point is:

bj(t|rxg) = FKj (q(t|rxg)) , j = 1, ..., nbp (8)

where nbp is the number of body points and FKs is the
forward kinematics showing the position of jth body point,
namely bj ∈ R3, at each time step. A group of trajectories
expressing the movements of the body points, as per eq. (8),
for a known grasping candidate rxg and a given sampling
time of a desired post-grasp trajectory is

X|rxg
= {bj(k) | bj(k)|rxg

= FKj

(
q(k)|rxg

)
)

;

j = 1, ..., nbp; k = 1, ...,K}
(9)

where f(y)|x means f is a function of y given x, X|rxg
∈

Rnbp×K , nbp is the number of body points and K represent
the total number of discrete time steps k. For the sake of
simplicity, we write bj instead of bj(k)|rxg in the following.
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We specify an obstacle by a set of linear constraints as
follows:

gih(x) ≤ 0, gih ∈ Lm, x ∈ R3 (10)

This expresses a set of inequalities describing a convex
region including ith obstacle where Ls are linear functions.
[14] proposed a function that is arbitrarily large in the region
inside the obstacle and decreases sharply proportional to d
that is the distance between b and gh(x) = 0 using eq. (9)
and (10).

di (bj , x) =

nh∑
h=1

{d̂
(
gih(x) = 0,bj

)
+
∣∣∣d̂ (gih(x) = 0,bj

)∣∣∣}
(11)

where nh is the number of linear constraints and d̂ is the
distance between b and the plane gh(x) = 0. If bj is on
or inside the convex region of the ith obstacle, then di ≤ 0.
Hence, we express the costs for all body points, obstacles and
sample points of G2 by using eq. (10) and (11) as follows:

Ci(
rxg|gh) =


ci11 ci12 ci13 . . . ci1T
ci21 ci22 ci23 . . . ci2T

...
...

...
. . .

...
cinbp1

cinbp2
cinbp3

. . . cinbpT

 (12)

Where cij,k|rxg,gh represents the cost di(b|rxg, gh) for
the ith obstacle, jth body point at kth time step. We can
easily extend our cost computation to more than one obstacle
C = [C1, C2, ..., Cno

] where no is the number of obstacles.
Finally, eq. (13) defines the collision cost for a desired post-
grasp trajectory of the object and an obstacle. Given the
desired trajectory of the object, as per eq. (6), and an obstacle
as per eq. (10), we can write C(rxg, gh) in eq. (12) as a
function of cxg , i.e. C(cxg|rxc, gh). Hence, we write the
obstacle avoidance cost J(C(rxg, gh)) as a function of cxg ,
as per eq. (13).

J(cxg|rxc, gh) = |1./(C(cxg|rxc, gh) + 1δ)|1 (13)

where δ−1 is a fixed value for setting the maximum available
cost, 1 is a matrix whose elements are equal to 1, and ./ is
the element wise division operator. J yields maximum costs
on and inside the convex region representing an obstacle. A
post-grasp manipulator trajectory that yields minimum cumu-
lative value of cost ideally allows collision-free movement
for the robot. By definition, the value of J is a function
of grasping configuration, obstacle position and shape and
object trajectory.

cx∗g = argmin
cxg

J (14)

Therefore, we select the optimal grasp candidate cx∗g that
minimises collision cost for the given post-grasp movements
and obstacle position.

2-D link simulated manipulator

Fig. 3(a) shows a 2-D manipulator tasked with grasping
a rectangle object from its top edge and moving it from the
bottom right to top left of the image. Nonetheless, the grasps
at the far left part of the top edge of the object result in

(a)
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Fig. 3. (a) 2-D planar manipulator moves the cuboid object from bottom
right to top left along the black dashed line. The red circle represents an
obstacle added to the workspace. (b) shows the cost corresponding with
each grasping candidate at the initial position of the object. Grasps at 0.05
[m] and 0.1 [m] yield collision, hence, they result in the maximum value
of cost, i.e. δ−1.

collisions between the link of the manipulator and an added
obstacle, shown by the red circle. As such, from the set
of feasible grasping configurations (shown by green crosses
on the blue rectangle in Fig. 3(a)), just a few numbers of
them allows the manipulator to perform the desired post-
grasp movements. Therefore, the robot must select the one
that yields overall collision-free movements.

For each grasping configuration, an obstacle avoidance
cost is estimated using eq. (13). Fig. 3(b) shows the estimated
costs for selecting a grasp configuration and perform the
given task. The lower the cost, the larger is the distance
between the manipulator and the obstacles during move-
ments. In 3(b) the vertical axis shows the obstacle avoidance
cost J and the horizontal axis is the x coordinate of the
grasping configuration on the top edge of the blue object.
Each grasping configuration is at 0.05 [m] from another. The
cost values suggest that grasping configurations at far right
on the object (i.e. X = 0.5[m]) is the most suitable one for
moving the object along the given trajectory.

III. EXPERIMENTAL RESULTS

We set up a “Panda” manipulator manufactured by
FRANKA EMIKA to perform experiments showing the ef-
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(a) (b) (c) (d)

Fig. 4. This figure shows the Panda performs pushing ((a) and (b)) and rotating ((c) and (d)) by grasping the cylindrical peg at 1 and 2 (shown in
Figs. 1(a) and 1(b)). Figs. (a) and (b) show the Panda performed the inserting and rotating task without colliding with the obstacle while it grasped the
peg at 1 and 2, respectively. On the contrary, grasp 1 and 2 resulted in a collision during performing pushing and rotating task, respectively (Figs. (b) and
(d)).

fectiveness of our approach for selecting a grasping configu-
ration. The Panda has 7 revolute joints and an electric parallel
jaw gripper. We designed three experiments (i) pushing a peg
into a barrel (Fig. 1(a)), (ii) rotating the peg in the barrel
(Fig. 1(b)), and (iii) pick-and-place task (Fig. 5).

First, the Panda is tasked with pushing and rotating the
cylindrical peg in the barrel (Fig. 4). This is a sample of
common tasks in industry in which the trajectory of the
object is constrained and is known prior to G0 and G1. Two
stable grasps are considered (Fig. 1) that have high likelihood
as per eq. (5). We use Trac-IK [15] and eq. (6) to compute the
trajectory of the end-effector corresponding with G2 (shown
with the black arrows in Fig. 1(a) and 1(b)) and grasp 1
and 2. In the first task, the manipulator pushes the peg into
a cylindrical barrel by moving the peg from right to left, as
shown in Fig. 4(a). In the second task, the manipulator rotates
the peg clockwise in the barrel by π

6 [rad] (Fig. 4(c)). An
obstacle in the workspace, however, makes one of the grasp
unsuccessful as it results in collision between the manipulator
and the obstacle. The collision costs are J(t1,g1) = 11126,
J(t1,g2) = 3512, J(t2,g1) = 6887 and J(t2,g2) = 15318
where t∗ and g∗ represent ∗th task and grasp, respectively.
These cost values indicate, grasp 2 results in collision-free
movements during performing task 1, as shown in Fig. 4(a),
while it collides with the obstacle during executing task 2
as shown in Fig. 4(b). On the other hand, grasp 1 results
in successful completion of task 2 (Fig. 4(c)) while yields
collision during post-grasp movements of task 1 (Fig. 4(d)).
This shows the cost values correctly predict collisions during
post-grasp movements.

Next, the Panda is tasked with picking up a white cuboid
object (located on the table in front of the robot) and placing
it at the desired target pose shown with G in Fig. 5(a)). The
desired trajectory corresponding with the object movements
(G2) is shown with red dashed line and is known prior to
the experiment. A set of 6 grasping configurations with the
high likelihood are also considered (using eq. (5)).

We add an obstacle to the robot’s workspace. The obstacle
position is captured by an Astra Pro RGB-D sensor, tracked
using a marker-based Aruco tracker and is represented in
the robot frame by camera calibration transformation. As the
collision-free object movements are known, only a collision
between the manipulator and the obstacle may cause a
problem during movements. We compute the collision cost
for all 6 grasps (shown in Fig. 5(a)) which are shown in

Fig. 5(d). These costs show that grasp 5 and 6 are collision-
free (Fig. 5(c)) and grasp 1 to 4 yield collision between
the manipulator and yellow cuboid during post-grasp move-
ments (Fig. 5(b)). We performed the desired movements and
Fig. 5(b) and 5(c) show the manipulator during post-grasp
movements with unsuccessful (grasp 1) and successful (grasp
6) grasping configurations, respectively.

A. Time evaluation

The time for computing 10,000 IK and the obstacle
avoidance cost is shown in Fig. 6. The mean value of IK
and the cost computation time is 0.0104 [s] and 0.0107 [s],
respectively. Although the maximum time of computing IK
and J are 0.0177 [s] and 0.0171 [s], these represent outliers
of data. 25th and 75th percentiles of the computation time
samples are in the interval of 0.0102 [s] and 0.0103 [s] for IK
and 0.0105 [s] and 0.0107 [s] for the whole cost computation.
This includes computing the IK and obstacle avoidance cost.
To sum, our expected mean and median cost computation
frequency are 93 [Hz] and 94 [Hz], respectively. In the worst
case, the expected cost computation frequency is 58 [Hz].

To show the correlation between the obstacle position and
the computed cost, we performed another experiment shown
in the paper’s video. In this experiment, a human is moving
an obstacle in the robot’s workspace while our proposed
approach computes the collision cost. Fig. 7(a) and 7(b) show
the trajectory of the obstacle moved by a human. Fig. 7(c)
depicts the corresponding obstacle avoidance costs for all 6
grasp configurations at each time step. Three parts can be
identified in the trajectory of costs in Fig. 7. In the first and
the last parts of the trajectory, grasping configurations 3, 4, 5
and 6 yields high value of costs indicating possible collision
of robot and obstacle whereas they obtain very small cost
values in the mid part of the trajectory. On the other hand,
grasps 1 and 2 yield collision-free post-grasp movements
during the initial and final parts of the obstacle trajectory.

This paper is accompanied by a video of the correspond-
ing experiments. The video can be watched on youtube
(https://youtu.be/TqaPLtiiUck).

IV. CONCLUSION AND DISCUSSION

This paper presents a method for selecting a grasp enabling
post-grasp manipulative trajectories to be achieved without
collisions. This work complements other work on algorithms
for grasp synthesis. In principle, any grasp synthesis method
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Fig. 5. Experimental set up: (a) the Panda robot picks up the white
cuboid object at initial position S and places it on grey rectangle G.
The movement trajectory is assumed to be given and is shown with the
red dashed line. The robot reference frame is shown with RGB colour
corresponding with {X, Y, Z}. A marker-based tracking system computes
the position of the obstacle in the robot reference frame. Based on this
position a cost for each grasp candidates is evaluated as per eq. (13). (b) the
robot collides with the obstacle (marked with the red circle) as it randomly
selected the grasping configuration without using our predictive grasping
approach; (c) the robot successfully performs the task by using our predictive
grasp planning approach. (d)collision costs corresponding with each grasp
candidate of the pick-and-place task shown in Fig. 5(a).

can be combined with this work in a modular way, i.e.
our method will select between a variety of stable grasps,
proposed by an arbitrary grasp synthesis method, and choose
the best to enable the post-grasp manipulation. Our method
achieves this by computing, for each proposed grasp, a
corresponding collision cost that would be incurred by a
manipulator in order to deliver the target object along its
desired post-grasp trajectory.
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Fig. 6. Time of computing 10,000 times the IK and the obstacle avoidance
cost values. The mean value of computation time is 0.0104 and 0.0107 [s]
for IK and cost, respectively. The post-grasp trajectory includes 100 sample
points. Nonetheless, the number of sample points of a post-grasp trajectory
can be significantly reduced as long as the distance between two consecutive
sample points is less than the minimum dimension of the obstacle, e.g.
length, height and width of a cuboid. This allows us to be sure there is at
least one sample capturing a collision.

Previous studies have predominantly considered (1) form-
ing a stable grasp on an object and (2) collision-free reach-to-
grasp trajectory planning. In contrast, this paper has studied
how intelligent grasp selection enables collision-free post-
grasp movements. We have demonstrated the effectiveness
of our approach in three different common robotics tasks
(1) pushing a cylindrical peg inside a tube, and (2) rotating
the peg inside the tube, and (3) a pick-and-place task. Our
results show how a robot can intelligently select a grasping
configuration by analysing possible collisions during post-
grasp motions.

A statistical analysis of computation time and our previous
study [16] suggest that we can use this system to guide
a human operator (using a haptic teleoperation device),
by providing real-time haptic cues towards a grasp that
is collision-free during known post-grasp trajectories. For
this application, a cost-computation frequency greater than
15 [Hz] was shown to be sufficient for providing real-
time perception of haptic cues to the human. In this paper,
our empirical experiments showed that the frequency of
computing collision costs, on a standard 5-core Intel PC, is
greater than 50 [Hz] in the worst case. Therefore, our future
work will extend this approach, and use it for generating
haptic operator-assistance cues in a teleoperation scenario.
Such cues will help the human operator to steer a master
device, to effect grasps with a remote slave robot which are
both stable and also facilitate collision-free post-grasp move-
ments, which may be also learned from demonstrations [17].
Since our method is based on computations which can readily
be prallelized, the approach is computationally scalable to
cope with the case of more obstacles and highly cluttered
scenes in real-time.
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Fig. 7. These figures show the computed cost values for performing the pick-and-place task with the Panda robot. (a) and (b) shows the trajectory of the
obstacle that is moved by a human during the experiment. (c) shows evaluated values for each grasp configurations during the experiment. These figures
demonstrate how the values of costs at different grasping configurations vary with the change in position of the obstacle. In the middle of the experiment,
the obstacle is away from the robot’s workspace which yields a drop in all the costs values. This makes even grasps 5 and 6 less costly than grasps 1 to 4.
However, if the obstacle is in the way of manipulative movements, as per t = 0− 5[s] to t = 14− 18[s], grasps 5 and 6 yield very large value of costs.
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