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Abstract— Autonomous behaviors in humanoid robots are
generally implemented by considering the robot as two separate
parts, using the lower body for locomotion and balancing, and
the upper body for manipulation actions. This paper provides
a unified framework for autonomous grasping with bipedal
robots using a compliant whole-body controller. The grasping
action is based on parametric grasp planning for unknown
objects using shape primitives, which allows a generation of
multiple grasp poses on the object. A reachability analysis is
used to select the final grasp, and also for triggering a base
repositioning behavior that locates the robot on a better position
for grasping the desired object more confidently, considering all
grasps and the uncertainty in reaching the desired position. The
whole-body controller accounts for perturbations at any level
and ensures a successful execution of the intended task. The
approach is implemented in the humanoid robot TORO, and
different experiments demonstrate its robustness and flexibility.

I. INTRODUCTION

Humanoid robots are intended for performing mobile
manipulation in human environments, for replacing humans
in dangerous areas, or for taking over physically demanding
or repetitive tasks. Autonomous behaviors are expected for
successfully executing different types of actions, including
walking, multi-contact locomotion, and grasping and manip-
ulation of objects. Due to the large number of degrees of
freedom required to create a humanoid robot, motion plan-
ning and control of the robot become complex and expensive
problems. A common solution adopted in the community
is the consideration of lower and upper body as separate
parts: the upper body executes a manipulation task, and the
lower body uses a balancing controller to keep the robot
in equilibrium while considering the manipulation forces as
perturbations for the balancer. In typical mobile manipulation
scenarios using industrial or humanoid (wheeled) robots, the
robot moves to a desired location, stops and freezes the lower
body, and then executes the manipulation task [1].

The autonomous robot is expected to decide what is the
best location for performing an intended manipulation action,
or to reposition its base if a selected base location is not good
enough for performing the task (Fig. 1). Different techniques
have been proposed for this purpose. Reachability inversion
maps encoding the inverse kinematics information are used
to compute multiple base locations at the floor level for a
wheeled humanoid robot to achieve one desired TCP location
(which corresponds to a goal grasp) [2]. This concept was
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Fig. 1: Humanoid robot TORO [5] reaching to grasp a ball
while actively balancing against the human perturbation.

extended to find the SE(2) stance (2D position and 1D
orientation) for a bipedal humanoid robot [3]. A coupling of
forward and inverse dynamic reachability maps was proposed
in [4] to plan lower body foot positions and upper body arm
configurations to do a manipulation task while maintaining
stability. All of these methods provide multiple base poses
for a single desired TCP location, even though it might be
possible to grasp an object with diverse TCP locations.

A recent approach in [6] also uses inverse reachability
maps, but accounts for multiple task and grasp poses. It
finds all possible base positions from an inverse reachability
map that satisfies the task poses, clusters them and assigns
success probability scores for each cluster. Clusters with
higher scores are again processed to find the best orientation
for the base by analyzing the reachability map. Another
consideration of multiple goals is through the use of a surface
map [7], which allows finding the best robot pose for a
specific polygon (for instance, a table) that represents the
target workspace rather than a best pose for a target object.

All of the above methods assume that the computed base
pose is perfectly reachable using an appropriate path/foot
step planner and controller, and do not consider that there
will be uncertainties in reaching the base pose precisely.
Moreover, they are computed for manually assigned goal
grasping poses. One alternative to automatically create a
pool of grasp poses is through parametrized grasp planning
using geometric primitive shapes. The simplification of grasp
planning through primitives was introduced in [8]. A de-
composition of the CAD model of the object in primitive
shapes [9] or in boxes [10] has also been proposed to create a
database of simplified objects that is compared through graph
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matching with the primitive shapes detected on the scene.
For unknown objects, descriptors based on shape context are
used for learning approaches to generate grasps [11].

This paper provides an approach for the generation of
autonomous grasping behaviors for unknown objects using a
bipedal humanoid robot. The objects are visually recognized
and classified as a set of primitive geometries, for online
generation of parametrized grasps for the object. When the
initially chosen robot pose is not good enough for performing
the grasping task, the robot is automatically repositioned
based on a reachability analysis. This analysis is performed
for a grasping region, which takes into account uncertainties
in the positioning of the mobile robot, and simultaneously
considers multiple goal grasps, thus avoiding dependency on
a single goal grasp or on a discrete set of pre-defined grasps.
Finally, the grasping action is executed using a whole-body
compliant controller that continuously updates the position
of the arm to effectively reach the grasping target, and avoids
splitting the control of the humanoid robot into separate
threads for the lower and upper body.

II. APPROACH OVERVIEW

The overall architecture of the approach used in this work
for autonomous humanoid grasping is shown in Fig. 2. It
represents in different colors the blocks that correspond to
perception, planning, and control. The intended application
is a tabletop scenario, where the object is placed on a flat
dominant surface. In our experiments, we used AprilTags to
mark different tables. Once the AprilTag is located, the robot
walks to a predefined location with respect to the AprilTag.
For walking, the robot uses a simple step planner in Cartesian
space that moves toward the goal in two stages. In the first
stage, the robot approaches an intermediate location while
reaching a desired orientation, and in the second stage, the
robot moves toward the goal following a straight line, i.e.
keeping the desired orientation. The success of the walking
motion is ensured through visual odometry and SLAM; our
implementation uses ORB-SLAM2 [12]. The components
described so far have low complexity (step planner) or are
relatively standard (AprilTag detection, SLAM), and will not
be explained in further detail in the paper.

After reaching the goal position for entering the manipu-
lation phase, the robot captures data from the scene, and a
visual pipeline allows the detection of the object of interest.
The object is approximated as a primitive geometrical shape,
and that shape is also used for the parametric grasp planning,
as described in Section III. The subsequent grasp selection
filters out unreachable and colliding grasps, and ranks the
remaining grasps according to a desired quality metric. When
there are no reachable grasps, the base of the robot must be
repositioned so that there is a higher confidence in obtaining
a successful grasp. A reachability analysis using Reachability
and Capability maps [13] allows the selection of the optimal
base position, as presented in Section IV. The optimal
position is identified while considering the uncertainty in
walking to the goal precisely. After reaching the new base
position, the robot repeats the perceive-plan-act cycle, where

Fig. 2: Overview of the architecture for autonomous bipedal
humanoid grasping.

multiple feasible grasps are usually available. In rare cases,
if the robot fails to reach the base position within the allowed
error threshold used to model the uncertainty, there might be
no feasible grasps. To overcome such cases, a new optimal
position is recalculated and the cycle is repeated.

When there are feasible grasps available, the next step
is the computation of a trajectory in joint space for the
kinematic chain for manipulation (right arm plus hip in our
case, due to the poor reachability and lack of redundancy
of the 6 DoF arms of TORO). Once the path is obtained, it
is executed using a whole-body compliant controller. The
whole-body balancing controller and its relation with the
control of the manipulation chain are discussed in Section V.
Finally, Section VI presents different experiments on the
humanoid robot TORO [5] that demonstrate the flexibility
and robustness of the approach.

III. GRASPING BASED ON PRIMITIVE SHAPES

A human interacts daily with multiple objects of different
shapes, but most of these objects (or at least certain parts of
them) can be assimilated to one primitive shape. By doing
so, the manipulation of these objects can also be simplified
by allowing the robot to plan grasps online while considering
few constraints (rechability, no collision), and later on, move
towards other constraints or actions as required to cope
with the uncertainties caused by the simplification of the
object. This section describes such vision and grasp synthesis
module for primitive shapes.

A. Primitive Shape Fitting

The algorithm used here to automatically decompose the
scene into shape primitives was initially introduced in [14]
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Fig. 3: Parametric shape fitting of different objects. Primitive shape is highlighted in blue. Dominant plane is highlighted in
red. Camera frame and the RGB image of the scene are also embedded. From left to right: (i) Mango-like object detected
as a sphere, (ii) Cucumber-like object detected as a cylinder, (iii) Individual lime from a bag detected as a sphere.

p l a n e ” t a b l e ”
. . .
volume ” t a b l e t o p ” : o u t s i d e o f ” t a b l e ”
# a l o n g s u r f a c e normal , bounded by c o n t o u r
. . .
s p h e r e box c y l i n d e r ” o b j e c t ” i n ” t a b l e t o p ” \\
p r e c l u s t e r 3cm 50 # minimum number o f p o i n t s

BSdiamete r : [2cm � 35cm ]
wid th : [2cm � 30cm ] # x a x i s
h e i g h t : [2cm � 30cm ] # y a x i s
d e p t h : [2cm � 30cm ] # z a x i s

Listing 1: Example of scene parsing description to search for
a sphere, box, or cylinder on a table.

and extended in [15]. The algorithm was successfully em-
ployed for robotic manipulation in [16], however with a fixed
set of taught grasps. Starting with depth images or (multi-
view) point clouds, it robustly fits different basic shapes into
the scene, leaving the unmodeled points as obstacles. Several
objects next to or on top of each other can also be handled
due to physical plausibility checks. The basic algorithm was
complemented with the definition of additional constraints,
e.g. regions of interest or maximum size of the primitive, in
order to improve the runtime. As the intended application is a
tabletop scenario, a dominant planar surface is first searched
for and cropped, and then different primitive shapes are fitted
to the points lying on top of it. This is achieved using a
YAML scene description, as shown in Listing 1.

The initial algorithm in [15] forced the system to search
for each possible shape that matches the specific constraints
separately. To use the shape fitting in a fully automatic way,
the scene parsing language was extended to specify a list of
possible shapes, from which the best match to each cluster
will be returned. The shape constraints are then limited to
the ones that are common to all shapes, namely the bounding
sphere diameter (BSdiameter) and the extents. The extents
of the shape can be limited such that the detected object is
graspable by the hand.

More complicated shapes (e.g. cone, torus, surfaces of
revolution) can also be fit, but this work uses three prim-
itive shapes, namely spheres, boxes, and cylinders, as those
constitute the vast majority of shape primitives we expect
to encounter. Some examples of the shape fitting process on
objects that are not perfectly shaped are shown in Fig. 3. The
YCB set of objects [17] was used to estimate the proportion
of commonly encountered objects to be manipulated that

could be modeled using this approach. From the 72 YCB
objects, 41 objects have graspable parts that can be fitted with
one of the three shape primitives robustly, 6 objects work
only under certain orientations (Fig. 4a), and the remaining
25 objects cannot be modeled (Fig. 4b), although object-
specific tuning of parameters and constraints might work in
some cases.

(a) Orientation-dependant. (b) Cannot be modelled.

Fig. 4: Evaluation of shape fitting on YCB objects.

B. Parametric Grasp Synthesis
The parametric grasp planner used in this work is inspired

by [8]. The grasp configurations are generated perpendic-
ular to a discrete set of object surface normals that cover
most of the graspable directions. The planner uses basic
parameters like linear and angular grasp distribution around
the symmetry axis. In this work, the parametric planner is
extended with additional considerations. The hand closure
signature, as explained in [18], is computed for the hand
and provided as an input to the planner to find grasps that
will result in a force closure grasp. The closure signature
can be basically interpreted as a fixed transformation that
the hand should maintain with respect to the surface normal
of the object at the grasping position. This is important
especially for anthropomorphic hands, since they only have
one opposing thumb finger and the orientation of the hand
greatly affects the success of the obtained grasps. Fig. 5d
shows the reference frame used for the Touch Bionics i-
limb Revolution hand used in TORO, which reflects the main
direction provided by the closure signature. The maximum
opening of the hand, i.e. the distance between the opposing
fingers when they are stretched out, is another property used
by the planner. This helps to avoid grasp generation along
certain dimensions of the shape that are too big for the hand.
A parameter called safe edge distance is also introduced, to
constrain the fingers at a certain minimum fixed distance
from the edges of the object, in order to avoid too flimsy
grasps that might lead to losing the object. The grasp planner
also has the possibility to define a fixed number of grasps
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to be generated uniformly, or a fixed distance between each
one of the grasps. Fig. 5 shows the grasps generated for
three primitive shapes using this method. On average, it
takes about 10 milliseconds to generate 200 grasps on a
normal desktop PC. For complex objects with a very coarse
shape estimation, the generated grasps could fail due to no
force-closure. Also, the closing of the hand is currently a
synchronized movement of all fingers and it is the same for
all objects. Integrating a grasp success/failure feedback to
trigger a recovery strategy is considered as a future work.

C. Grasp Selection
The reachability and capability maps proposed in [13]

are used for the grasp selection process. The reachability
map can be queried to find if a particular transformation
of the end effector is reachable or not. The capability map
additionally provides an index (usually from 0 to 1) reflecting
the dexterity of the end effector at that position (i.e. the
number of orientations reachable in that voxel). Both maps
are generated offline for a given manipulator, and the data can
be efficiently retrieved online; approximately 2000 queries
can be made every millisecond on a normal desktop PC.

First, the grasps that are generated for the approximated
object are filtered by removing the colliding and not reach-
able (retrieved from the reachability map) ones. Each of the
remaining grasps receives a grasp quality, depending on two
factors. The first one is derived from the capability of the
manipulator at the grasping position, as retrieved from the
capability map. The second one is the change in Cartesian
distance and orientation of the grasping configuration from
the current configuration. The two factors are combined with
an appropriate weighting to get the final grasp quality. The
weight is empirically selected depending on the particular-
ities of the manipulator’s overall workspace. For instance,
TORO has only a 6 DoF arm, and the 7

th DoF is coming
from the hip. With the 7 DoF, TORO has a high dexterous
region at the height of the chest, and a medium dexterous
region at the height of the hip (which is also the table height
approximately). Therefore, the capability index is given a
relative high weight of 70%, while the Cartesian distance
measure receives a weight of 30%.

IV. OPTIMAL BASE REPOSITIONING

Many a times, humanoid robots have to relocate their
base in order to successfully perform a manipulation task
at different parts of the environment. For a bipedal robot,
we consider the base as the SE(2) position of the hip
(height of the hip on the z-axis is constant and rotations
are allowed only around the z-axis). The reachability and
capability maps are used for computing the optimal base
position. The decision to relocate the robot is triggered by
having no reachable grasps, or reachable but not executable
grasps, i.e. a valid joint trajectory is not possible from the
current configuration. The algorithm computes the optimal
base position such that it is favorable for a set of possible
grasps, rather than for a single predefined grasp. Moreover, it
also considers the uncertainty in reaching the base position.

In the offline phase, semantic information of the envi-
ronment, in this case the table, is saved. The stored info
describes a finite set of base positions around the table
where interaction with the object is desirable. Online, the
set of parametric grasps generated for the object is filtered
in order to remove those colliding with the environment.
Now, for each potential grasp, a grasping region is defined
by a cube around the target position. The size of the cube is
decided based on the uncertainty in reaching a goal base
position precisely. This can be empirically estimated by
commanding various goals and finding the positioning error
of the robot. Now, a base dexterity score is computed and
used to prioritize the best position of the robot around the
table. Using the capability and reachability maps, all the
voxels within the grasping region are studied in order to find
the average capability index ci and the number of reachable
voxels ri with the required grasping orientation, respectively.
The base dexterity score for a specific grasp is then given by

di = ri ⇤ ci. (1)

The overall dexterity for a given base position is computed
by adding the individual dexterity for each of the n grasps,

d =

i=nX

i=0

di. (2)

Algorithm 1 Finding Optimal Base Position
Given: Capability map CM , reachability map RM , cube size c,
grasp frames G = {G1, . . . , Gn}, and a set of possible hip frames
H = {H1, . . . , Hm}
Output: Optimal hip frame Hopt for successful grasping

1: for each hip frame Hj in H do
2: for each grasp frame Gi in G do
3: ci = queryAverageCapability(CM, c,Hj , Gi)
4: ri = queryReachability(RM, c,Hj , Gi)
5: Base dexterity for grasp Gi is di = ri ⇤ ci
6: end for
7: Overall base dexterity d =

Pi=n
i=0 di

8: Save the overall base dexterity to a set D
9: end for

10: Sort the set D in descending order
11: return Hopt with the best overall base dexterity

Algorithm 1 provides an overview of the algorithm used
to compute the best base position. By computing the base
position in this way, there is no dependency on a particular
grasp. Since a grasping region is considered for every grasp,
if the robot could reposition itself within the allowed error
threshold, then there is a higher probability of finding more
executable grasps. The computation time is proportional to
the number of voxels to be queried in the map, which in
turn is proportional to the number of grasps, number of base
positions considered, and the size of the grasping region.
For the experiment discussed in Sec. VI-A, it took 100

milliseconds to compute the optimal base position.
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(a) Box (b) Cylinder (c) Sphere (d) Hand reference frame

Fig. 5: Grasps generated for the Touch Bionics i-limb (right) hand for different objects.

V. COMPLIANT BALANCING CONTROLLER

A. Dynamic Model
In humanoid robotics, it is common to use a floating-

base description of the robot in order to deal with contact
transitions or relocations. In most cases, the hip or trunk is
selected as the base link, as they represent the central parts of
the robot body. But as the center of mass (CoM) is crucial
for balancing, from a controller perspective it can also be
selected as the base of the robot. For this reason, a frame C
located at the CoM but with the same orientation as the hip
is introduced in [19]. Let vc 2 R6 denote the translational
and rotational velocity of the CoM frame C. Based on the n
joint angles q 2 Rn, the dynamics of the humanoid robot is
given by

M

✓
v̇c
q̈

◆
+C

✓
vc
q̇

◆
+

✓
mg0

0

◆
+

✓
0
⌧

◆
+ ⌧ ext. (3)

where M 2 R(6+n)⇥(6+n) and C 2 R(6+n)⇥(6+n) denote
the inertia and Coriolis/centrifugal matrix, respectively. The
gravitational vector is given by (mgT

0 0 )
T , where g0 2 R6

is the gravitational acceleration and m the total mass of the
robot. The joint torques are given by ⌧ 2 Rn, while the
influence of external disturbances is represented by the vector
of generalized forces ⌧ ext 2 R6+n.

Stacking the Cartesian velocities vi 2 R6 (translation and
rotation) of the  end-effectors into the vector v 2 R6 

leads to
v =

⇥
Ad J

⇤✓vc
q̇

◆
(4)

with Ad 2 R6 ⇥6 and J 2 R6 ⇥n gathering the associated
Adjoint Adi 2 R6⇥6 and Jacobian matrices J i 2 R6⇥n.
Let us divide the  end-effectors into two groups. The  
end-effectors that are in contact with the environment and
used to support the robot will be referred to as “balancing
end-effectors”. The remaining end-effectors will be called
“interaction end-effectors”, because they can be used to
perform the desired grasping or manipulation task. The
velocities of the end-effectors in Cartesian space are then

v =

✓
vbal
vint

◆
=


Adbal Jbal
Adint J int

�✓
vc
q̇

◆
(5)

where Ad is decomposed into Adbal 2 R6 ⇥6, Adint 2
R6( � )⇥6, and J is decomposed into Jbal 2 R ⇥n, J int 2
R6( � )⇥n. Note that vbal = 0 because the balancing end-
effectors are in contact with the ground floor.

B. Balancing Controller
This section gives a short summary of the passivity-based

balancing controller that the authors presented in [19]. The
controller stabilizes the CoM by a Cartesian compliance,
which applies a wrench F c 2 R6 at the CoM frame C.
Each one of the interaction end-effectors is stabilized by
another Cartesian compliance, with the resulting wrenches
stacked into F int 2 R6( � ). In order to support the robot,
the control algorithm computes a suitable set of balancing
wrenches F bal 2 R6 by solving the following quadratic
optimization problem

F opt
bal = argmin

F bal

⇣
F bal � F def

bal

⌘T
Q

⇣
F bal � F def

bal

⌘
(6)

with respect to

AdT
bal F

opt
bal +AdT

int F int = mg0 � F c (7)

and
AbalF

opt
bal  bbal. (8)

Here, Q denotes a positive definite weighting matrix, and
F def

bal a default wrench distribution. The equality constraint (7)
ensures that all end-effector wrenches (F bal and F int) sum
up to the wrench of the CoM compliance plus gravity
compensation. The inequality constraint (8) represents the
contact model, which accounts for unilaterality, friction and
the Center of Pressure (CoP) of each contact in order to
prevent the balancing end-effectors from sliding, tilting, or
lifting off.

After computing a suitable wrench distribution F opt
bal , the

end-effector wrenches F = ( (F
opt
bal)

TF T
int )

T are mapped to
joint space via

⌧ = �JTF �N⌧ null. (9)

The torque resulting from the Cartesian end-effector
wrenches is superimposed with a torque ⌧ null 2 Rn, which
is included to stabilize the configuration of the robot in
nullspace in order to deal with redundant robots. The as-
sociated nullspace projector is given by N 2 Rn⇥n.

C. Planner-Controller Interface
In this work, the right manipulator (right arm and hip) is

considered as the major interaction end-effector. The left arm
and the legs are not considered for the grasping application
presented here, but could be included for more complex
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manipulation tasks. To reach a desired grasp in the Cartesian
space, a valid joint configuration is found using TRAC-
IK [20] and fed to a standard bidirectional RRT joint space
planner to find a collision-free path. In order to reduce the
complexity of the planner, a stationary hip is assumed to
be the base of the robot, which allows to do the planning
only in the joint space. The trajectory in joint space is post-
processed via forward kinematics in order to provide the
Cartesian goals for the CoM and the hand compliances in
the controller, as explained below.

The controller is connected to the planner via an interface
that contains two different types of control objectives. The
first one is given by a desired trajectory in Cartesian space
for the CoM frame C and for both hands, which are used
to parametrize the Cartesian compliances F c and F int. The
second goal is a desired trajectory in joint space, which is
fed to the nullspace controller incorporated into (9). The
purpose of the balancing controller is to stabilize the desired
trajectory while providing a compliant behavior in case of
external disturbances. If the controller succeeds to stabilize
the desired trajectory provided by the planner, the CoM and
the hands will follow exactly their desired path, which causes
the hip to maintain a stationary Cartesian pose as assumed
in the planning process. If there is an external perturbation,
the controller will try to recover the prescribed trajectories.
As shown in Sec. VI-B, the controller is robust enough to
achieve this task successfully. It should also be noted that the
assumption of a stationary hip during the planning phase can
theoretically lead to a desired trajectory in which the CoM
leaves the support polygon, thus causing the robot to loose
balance. To avoid this, the validity of the CoM position is
checked before commanding the execution, which is stopped
in case of an invalid CoM. But according to the empirical ex-
perience of the authors, the CoM always stays well inside the
support polygon for the targeted grasps within the reachable
workspace of a single interaction end-effector (see Sec. VI-
B). This might fail for complex manipulation tasks involving
multiple interaction end-effectors, and therefore a suitable
joint or Cartesian space planner considering the floating base
would have to be used.

VI. EXPERIMENTAL EVALUATION

In order to validate the approach proposed in this pa-
per, experiments were conducted on the torque-controlled
humanoid robot TORO [5]. The robot has 6 DoF in each leg
and arm, 1 DoF in the hip, and 2 DoF in the neck. All joints
except the neck are based on the KUKA-DLR lightweight
robot technology, which allow the robot to be controlled in
both position and torque control mode. The robot is also
equipped with two i-limb Revolution prosthetic hands from
Touch Bionics. This anthropomorphic hand has five under-
actuated fingers with 1 active DoF for flexion/extension. The
thumb also has an additional active rotational DoF. For the
experiments below, the right arm of the robot is used. Since
the arm only has 6 DoF, which limits its reachability, the hip
is also considered as part of the active manipulation chain.

(a) At 15 degrees

(b) At 45 degrees

(c) At 75 degrees

Fig. 6: Capability (left column, colors are denoted in the
HSV scale from blue being the highest dexterity to red being
the lowest dexterity) and reachability (right column, only
the voxels reachable with the required grasping orientation
are highlighted in blue) of the right arm plus hip for the
grasping regions of all non-colliding grasps at different base
positions during Experiment I. The different base positions
are considered around the circular table at different angles
while maintaining the same distance from the table.

The robot is equipped with an Asus Xtion RGB-D sensor on
the head, which is used for perceiving the environment.

A. Experiment I: Base Repositioning

This experiment shows the robot grasping a box using
base repositioning. The robot starts from a initial location
and walks to the table identified using an AprilTag. After
reaching the table, the robot finds the object successfully and
generates a set of parametric grasps. Due to the kinematic
limitations of the manipulator, there were no reachable grasps
possible. The robot then computes the best base position
for the current object location using the algorithm described
in Sec. IV. For all the grasp regions corresponding to the
set of all non-colliding grasps initially generated, Fig. 6
shows the capability and reachability at different base po-
sitions during the planning phase. In this experiment, 7 non-
colliding grasps on top, 1 in front and 1 in the back of the
object were considered. The reachability and capability maps
were generated offline with a voxel resolution of 5cm. The
cube size (representing the uncertainty in the base position
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Fig. 7: Sequence of actions during Experiment I. From left to right: (i) The robot successfully walks and places itself in
front of a circular table, (ii) Since there are no executable grasps, the robot moves to the optimal base position, (iii) The
shape and pose of the object are detected, (iv) Reachable and non colliding grasps are generated, (v) The grasp with the
best quality and a valid motion plan is executed.

reachability) of the grasping region was estimated as 20cm.
Fig. 6a to Fig. 6c show that the dexterity indicated by the
capability index and the number of reachable voxels with
the grasping orientation are gradually increasing according
to the angular position around the circular table. Note that
the highlighted voxels in Fig. 6 correspond to the position of
the end of the arm for each potential grasping point, and do
not represent the hand position. This is due to the fact that
the capability and reachability maps were generated only for
the right arm plus hip, without considering the hand.

After finding the best base position, the robot starts
walking to it step by step using a simple Cartesian space
footstep planner. ORB-SLAM2 [12] is used to provide visual
odometry and localize the robot. As expected, the robot
approximately reaches the best base position. In order to
proceed with the grasping, the object shape and pose are
estimated again. The grasps are generated and the best
executable grasp is selected. For this grasping pose, the
motion plan is generated and fed to the whole-body balancing
controller for grasp execution. The different execution steps
of the experiment are shown in Fig. 7.

B. Experiment II: Compliant Control

This experiment shows the robot grasping an apple while
handling external disturbances and perturbations. The apple
was identified as a sphere. In order to avoid collisions with
the table, the planner selected a grasp from the top. Since the
apple was located on the table within the reach of the robot,
relocating the base was not necessary. Besides the grasping
aspect, this experiment is mainly used to demonstrate the
importance of using a compliant whole-body balancing con-
troller as part of the autonomous grasping pipeline, in order
to deal with external disturbances. During the execution of
the grasp trajectory, the robot received a push at the hip.
Then, the hand of the robot was restrained to simulate a col-
lision with an obstacle. The resulting position and orientation
errors of the right hand and the CoM are shown in Fig. 8. The
push at the hip created a deviation of 3.6 cm at the CoM, but
the controller successfully manages to keep the disturbance
at the CoM away from the right hand. After the push, the
hand was held back in its motion for approximately 1 s,
which resulted in a deviation of 3.4 cm of the hand position.
This time, the CoM was not affected by the disturbance.
After the right hand was released, the robot continued its
task while correcting the error, and successfully picked up

the apple from the table. This highlights the benefits of
using a compliant balancing controller, such that the robot
can be safely operated in a partially unknown or uncertain
environment, even in the presence of external disturbances
such as pushes or collisions. A deeper discussion on the
performance of the controller can be found in [19].
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Figure 9 shows a projection of the CoM and hip motion
onto the ground floor during the execution of the grasp trajec-
tory. It clearly shows that the CoM always stays far inside the
support polygon spanned by the two feet. As a consequence,
selecting a stationary hip during the planning phase, which
leads to a moving CoM, is a legitimate assumption as
postulated in Sec. V-C. Figure 9 also visualizes the push that
the robot received at the hip, causing a temporary deviation
of the hip and the CoM from the planned trajectory. Note
that except for the push, the hip almost remains stationary
at its initial position, as it is intended by the planning
algorithm (see Sec. V-C). The different execution steps of
the experiment are shown in Fig. 10.
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Fig. 10: Sequence of actions during Experiment II. From left to right: (i) Starting configuration in front of a rectangular
table, (ii) The shape and pose of the object are detected, (iii) Reachable and non colliding grasps are generated, (iv) The
compliant balancing controller successfully handles the external disturbances, (v) The grasp with the best quality and a valid
motion plan is executed.

VII. CONCLUSION

This paper presented an overall approach to create au-
tonomous grasping behaviors in bipedal humanoid robots.
Parametric grasping based on primitive shapes was used
for online generation of candidate grasps. A reachability
analysis was used to compute the best grasp poses. More
importantly, the reachability analysis was also used to com-
pute the best pose for relocating the base of the robot such
that the grasping probability can be increased for a given
scenario. The base repositioning considers multiple grasp
poses and uncertainty in reaching the calculated optimal base
position precisely. A compliant whole-body controller allows
a robust execution of the intended task while handling the
external disturbances, as demonstrated in the experiments
in the paper. To validate the robustness and flexibility of
the approach, similar experiments were conducted to grasp
different objects, some of which are also shown in the
attached video.

Current base repositioning works on SE(2), but the exten-
sion of the method to SE(3), to profit from the full potential-
ity of the humanoid robot and the whole-body controller, is
an ongoing work. The extension of the framework for dual
arm manipulation and the implementation of grasp failure
recovery strategies are considered for future work.
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