2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)

Beijing, China, November 6-9, 2018

Extended State Machines for Robust Robot Performance in Complex
Tasks

Vinayak Jagtap
vvjagtap@wpi.edu

Shlok Agarwal

ssagarwal @wpi.edu

Abstract— Most field robots today work under partial or
complete guidance of an operator. The operator monitors, or at
times augments, the control inputs of the robot to achieve better
results or desired behavior. Robots that are operated remotely
and over low bandwidth channels limit the involvement of the
operator, leaving them vulnerable to unanticipated scenarios.
The NASA Space Robotics Challenge (SRC), held in 2016-17,
posed a challenge to operate a simulated Valkyrie RS humanoid
robot over a minimum bandwidth of 64-4k bits/second uplink,
50k-380k bits/second downlink, and a maximum latency of 20
seconds. To achieve this, we designed and implemented extended
state machines that allow a robot to perform known tasks
autonomously in a partially known environment along with the
flexibility to perform system critical interventions manually, if
required. The main intuition behind our approach is to combine
(a) sensor data redundancy for object detection and (b) 2-stage
motion planning approach using state machines to successfully
accomplish complex tasks. The complex tasks demonstrated
are aligning a communication dish, picking up a solar panel,
and deploying solar panels autonomously. The overall system
design allowed successful completion of tasks even after sub-
task failures and/or complete communication loss.

I. INTRODUCTION

The humanoid robotics community is striving to enhance
development of ground robots that could perform complex
tasks in dangerous, degraded, and human-engineered envi-
ronments. A huge part of the motivation and momentum
came from the DARPA Robotics Challenge (DRC)[1] that
was held between years 2012-2015. Even though the com-
petition sparked the interest of many roboticists, it indi-
cated several shortcoming in the field of humanoid robotics.
“Robots can’t do much, robots are slow, robots fall down”
[2]. The NASA Space Robotics Challenge (SRC), which
began in 2016, focused on developing software to increase
the autonomy of humanoid robots so they can perform or
assist with tasks during space travel or after landing on other
planets (such as Mars), as well as on Earth. The Valkyrie RS
platform [3], built during the DRC, was used for this com-
petition. Valkyrie is a 44 degree-of-freedom (DOF), series
elastic actuator-based robot whose intended application is not
only responding to events such as the Fukushima nuclear
disaster, but also advancing human spaceflight and alien
planetary endeavors in extraterrestrial settings. The tasks in
the competition [4] were based on the conditions that might
be found if a robot were sent to another planet to set up a base
before humans arrive. One of the major challenges posed by
space robots is slow or non-existent communication from

All authors are affiliated with the Robotics Engineering Program, Worces-
ter Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA.

978-1-5386-7282-2/18/$31.00 ©2018 IEEE

Sumanth Nirmal
sgavarraju@wpi.edu

264

Michael A. Gennert
michaelg @wpi.edu

Sahil Kejriwal

skejriwal @wpi.edu

the distant robot to earth. The distance between Mars and
Earth adds high latency to radio signals which are already at
low bandwidth. For example, with the Curiosity rover, which
is one of the current active rovers on the surface of Mars,
operators face one-way delays between 4 and 24 minutes.
In NASA’s fifty years of Mars exploration, there have been
numerous instances where communication has been lost with
a probe or rover over extended periods of time [5]. For
instance, in 2004 NASA lost complete communication with
the Spirit rover on Mars which impaired its abilities. One
way of tackling the communications delay problem is to
move towards complete autonomy, which allows the system
to operate during communication blackouts. In this paper, we
as team WPI Humanoid Robotics Lab (WHRL), present our
approach for introducing autonomy in humanoid robots for
known tasks with the ability to control any predefined state
through a low bandwidth and high latency connection. The
sub-tasks in every task are in total order and can be retried if
an attempt fails. We introduce two novel techniques to obtain
reliability and robustness in our system. First we introduce
new strategies for applying perception and manipulation in
the extended state machine[6] to enhance the efficiency of
the system. Secondly, we introduce a three mode operation
to ensure reliability of the system by effective handling of
the exceptions. The experimental results confirm that our
methods ensure successful completion of tasks with little
or no manual intervention. This approach is implemented
in simulation on the Valkyrie RS robot to perform complex
tasks like turning handles to align a communication dish and
picking up and deploying a solar panel.

In Section II, we provide a quick review of similar work.
Section III describes the overall system that we designed and
implemented to operate the Valkyrie RS robot. Section IV is
dedicated to the design of the state machine. The perception
and manipulation aspects are covered in Section V and VI,
respectively. We present our results in Section VII followed
by conclusions in Section VIIIL.

II. RELATED WORK

The work described here extends work in supervised
autonomy for the DARPA Robotics Challenge [7] and [8],
which used much tighter supervisor oversight than in this
work. There, the default behavior when the robot sensed
an impending problem was to stop and wait for operator
intervention. Additional descriptions of levels of autonomy
for drones can be found in [9] and for vehicles in [10]. A
major distinction between these levels of autonomy and our

work is that they require a hard real-time response, whereas
for a planetary robot, it may be acceptable to wait for human
guidance. However, one does not necessarily want to wait
too long, so trying alternatives before requesting operator
intervention is likely to be a more reasonable course of
action. [11] explains preliminary work with levels and layers
to control a mobile robot and representation of behavior
modules in a subsumption architecture. Application of state
machine and decision making tools in robots can be found in
[12], [13] and [14]. To tackle systems with a large number
of states, a learning based approach to select state transitions
is shown in [15].

III. SYSTEM OVERVIEW

The entire system consists of 3 entities - Simulator, Field
Computer, and Operator Control Unit (OCU) as shown in
Figure 1. The field computer is connected to the simulator
with a high-bandwidth low-latency connection, whereas the
connection between field computer and OCU is over a low-
bandwidth and high-latency network. The robot/simulator
uses Robot Operating System (ROS) [16] and controllers
developed by the Institute for Human & Machine Cognition
(IHMC) [17] that provide an interface to control the robot
using ROS messages. The software architecture of the field
computer is designed to facilitate the implementation of the
state machine which forms the basis of making the tasks
autonomous. Figure 2 gives a brief overview of the structure
of the APIs developed and installed on the field computer and
how they interact with the simulator. An operator employs
OCU to control the robot or to visualize sensor data. All
experiments are conducted in the simulation using the NASA
Valkyrie R5 robot. When the experiments are to run on real-
time hardware, the simulator can be replaced by the real
robot. In fact, the APIs have been tested on real hardware
and have performed well in practice. In the rest of this section
we explain the software architecture on field computer and
the communication between field computer and OCU.

Simulation

IHMC Controllers

High bandwidth

e 2 lowTatency” ~
Field Computer
specific nodes: specific nodes specific nodes:
__ High latency
~~ " low bandwidth

Operator Commands

Fig. 1: System Setup

A. Perception APIs

Valkyrie R5 has a Multisense SL sensor that includes
stereo cameras and a spinning LIDAR. The stereo cameras
provide color images and distances with less accuracy and
latency than LIDAR whereas LIDAR provides more accurate

265

distance information with high latency and no color infor-
mation. High latency in LIDAR data is due to the rotation
of LIDAR which takes about 4 seconds for one complete
revolution. The perception package contains libraries which
are common to any kind of robot that uses Multisense
SL sensor, which includes providing rgb/disparity images,
raw pointcloud, and camera calibration parameters. Laser
Assembler combines the received laser scans into a single
pointcloud. This assembled pointcloud is used to maintain
a master copy of pointcloud of the visible world. Walkway
Segmentation finds planar regions and provides ground plane
information. This is fed to the Navigation APIs for generating
2D occupancy grid.

We implemented detectors for detecting known objects
required for completing specific tasks. These detectors use
images and assembled pointcloud for detecting objects. Im-
ages provide colors and patterns on surfaces along with other
features like edges, corners, etc. which can also be found in
pointcloud. We use the information from both these sources
to make the detection robust by allowing the system to retry
detection if one succeeds and other fails.

Footsteps Images and Laserscans
IHMC Controllers
High Level Control Inputs tf and Joint States

e _ Head |
Footstep Planner JUIS] Arm | Gripper | Perception Common
Map Generator Robot Self Filter
_ Wholebody | Laser Assembler
Trajectory S Ty Walkway Segmentation
— Fall Detector

3D Occupancy Grid
Cartesian Planner

2D Occupancy Grid

Fig. 2: Software Architecture

B. Navigation APIs

Map Generator creates a 2D occupancy grid using the
segmented walkway from Perception APIs. This helps create
a 2D map of planar regions where the robot can navigate. The
Footstep Planner plans footsteps from the robots initial posi-
tion to a goal position in the map using the ARA* planning
algorithm [18]. These planned footsteps are converted into
IHMC messages by Valkyrie Walker and sent to the robot.

C. Motion Planners

The motion planners are responsible for planning trajecto-
ries required for manipulation. To plan a collision free path,
the planners receive a 3D occupancy grid in the form of an
octomap which provides information of free and occupied
areas in the environment [19]. Any type of search-based or
sampling-based planner could be used in this framework to
achieve desired trajectory points. The motion planners also
contain an inverse kinematics solver which provides joint
trajectories for every waypoint in the trajectory. These joint
trajectories are then sent to the controller wrappers.

D. Controller Wrappers

This module provides wrappers over the IHMC controllers
which interact with the robot. The wrappers can send com-
mands to move individual joints of the robot or whole-body
motions to perform complex tasks. The controller wrappers
listen to the joint state and frame information of the joints
using a ROS package, tf[20] to read the current state of the
robot. They also receive trajectories from the motion planners
and convert them into high-level control inputs which are
sent to IHMC controllers to perform desired motion.

E. Communication Between Field Computer and OCU

Due to low-bandwidth network connection between the
field computer and OCU, data transfer between the two
should be limited. Even with bandwidth restriction, the
operator should have access to the robot state with the
ability to intervene and assist the completion of the task to
ensure system safety. These capabilities are provided using
one channel for sending/receiving text and one for graphical
user interface (GUI) on OCU. Figure 3 shows both the
channels where a chat server type configuration is used for
text commands and a VNC [21] server and client is used
for visualization. The chat server comprises of a broadcast
server, a message parser, a reader and a writer. The broadcast
server is an asynchronous chat server that transmits all the
messages it receives to all the clients that are currently
connected. The message parser converts messages sent by
the writer into commands and executes these commands on
the field computer, it also publishes log messages from the
field computer. The reader client displays state machine log
and robot state information on OCU. The entire visualization
of sensor data from robot runs on the field computer using
rviz!, VNC server, and a windowing system. The operator
can see the robot and sensor information using a VNC client
on OCU. As VNC client can be tuned to communicate at
low resolution images, this visualization approach reduces
the data transmitted drastically by eliminating the need to
transmit huge data structures like pointcloud and occupancy
grids over the network.

[field/log---------+

Fig. 3: Communication between field computer and operator
control unit

IV. STATE M ACHINES

A state machine is a mathematical model of computation.
It consists of a set of states defined for a system which may

Thttp://wiki.ros.org/rviz

266

or may not be independent of each other. At any given time,
the state machine is in exactly one state and the transitions
from one state to another are governed by either internal or
external triggers. In this paper, we use the term ‘state ma-
chine’ interchangeably to refer to the mathematical model or
to the program that implements it. We designed independent
extended state machines for each task that is started by the
operator. Our representation of the extended state machine is
defined as an 8-tuple M = (X, S, sg,0, D, F, U, A) where,
> is the set of input symbols, comprising all the inputs
that are accepted by the state machine.

S is a set of states.

sp € S is the initial state for a task.

D is a set of state variables that are used in the trigger
function. Let b; be a variable that stores the successful
completion status of state ¢, ¢;¥ be a set of variables
that stores the count of failures while executing the path
from state k to state ¢, n is the number of states and
h; € H is a set of hardware statuses, thus

D:{{biacikahi} | 0<k<i<n}

F' is a set of trigger functions responsible to generate
triggers for state transitions. It is defined as,

F={f;:D—{0,1}

0<i<n}

The individual trigger functions returns 1 only when
the current state is successful, the failure count of each
path is less than a specified threshold, and the robot is
standing with no hardware errors.

U is a set of update functions responsible for updating
state variables.

U={u;:D—D | 0<i<n}

A is a set of Actions.

0 is the transition function responsible for transition
from the current state to the next state when the trigger
function evaluates to true. If the trigger function evalu-
ates to false, the machine transitions to a previous state
depending on the value of ¢;*. The state variables are
updated using function U at the transition.

0:SxFxYXY—=SxUxA

We implemented this state machine for 2 tasks. The first
task requires the robot to fix yaw and pitch of a communi-
cation dish. In this state machine, there are 18 states. The
second task involves picking up of a solar panel, deploying
it on a solar array, and plugging in power cable into the solar
panel. This has a total of 30 states. Not all states are visited
during a run. For each state machine, sy corresponds to
the robot detached from its supporting harness and standing
unassisted. b stores the status of successful completion of
action a € A, such as detection of object, reaching a specified
goal, or attaining a required robot configuration. Once this is
achieved transition function, 4, is triggered with the trigger
function, f, of that state.

To ensure reliability we provide three different modes
of operation and a non-recoverable failure mode as shown

Error / Not recoverable

Manual Recovery

Success Region

Fig. 4: Operational Modes of the State Machine

in Figure 4 which represents our approach to exception
handling. The center of the figure is the region of success.
This region is necessary for transition to the next state. In
normal execution, the robot state will reside in this region.
The second layer represents the space of all the trigger
functions (F') and hardware statuses (H) in which the state
machine is able to converge autonomously to the success
region. The third layer is the space corresponding to manual
execution mode in which the trigger functions fail and the
state variables (D) are beyond the programmed logic and
needs operator intervention to proceed further. The system
moves into this layer when there is a non-critical issue and
needs user attention to proceed. All the states in the second
and third layer can converge to the success region with the
transition function defined above. The system moves to the
outermost layer when the robot is not controllable due to
hardware or software limitations. For example, Valkyrie RS
cannot stand up if it falls and there is nothing an operator
can do once the robot is flat on the ground. This situation
ends up in the ‘Not Recoverable’ layer.

The design of transition functions is crucial for reliable
handling of failures autonomously. Perception and manip-
ulation being very different but interdependent operations,
it is important to tune the state transitions for better results.
The next section provides details of detection strategies using
redundant sensor data to provide accurate object locations.
Manipulation algorithms can use these object locations to
perform required manipulation as explained in Section VI.

V. PERCEPTION

Object detection using images of known objects in an
unknown environment can be performed using either com-
puter vision techniques or learning algorithms. In both cases,
known features of the object of interest are searched in
the field of view to determine if the object is present. At
times, it is possible that similar features are detected on
different objects or the trained features of the desired object
are not visible in the current perspective. Such instances
lead to wrong detection or complete failure of detection.
Other factors like lighting conditions and occlusions impact

267

the accuracy of detection and add to the uncertainty. On
the other hand, using a pointcloud for object detection is
an expensive process due to processing a potentially large
number of points. Even though pointcloud data obtained
from LIDAR is more accurate, it inherently does not provide
color information, which makes object detection difficult.

fa
W

: B: Walk to
i \Coarse Location

fa=1

1

E: Manual
Execution

C: Detect Fine
Location

D: Next State

Normal Execution Autonomous Recovery Manual Recovery

Fig. 5: Perception with Recovery Modes.

For better use of resources, it is important to leverage
the accuracy of pointcloud data and the color of images
to make detection robust and computationally inexpensive.
We introduce an approach that takes advantage of both
information sources by employing the state machine to
perform coarse detection based on color images and then
fine detection using pointcloud data. As shown in Figure 5,
coarse detection is performed first. In this state, images are
used to filter a region of interest (ROI). If the detection fails
more than a set threshold, ¢, the state machine enters manual
mode and the operator can either provide the location of the
object as a marker or change the robot’s configuration such
that the probability of detecting the object becomes higher.
After identifying the coarse goal, the robot navigates to a
location determined by coarse detection and performs fine
detection. Fine detection is performed by extracting shape
features of the object from the pointcloud data in the ROI. We
use a pass-through filter to extract the relevant volume of the
pointcloud for further processing. This helps in faster feature
extraction at lower computational cost. If coarse detection is
wrong, fine detection would fail as the robot would search for
that object in an incorrect location. When the fine detection
fails less than the set threshold number of times, the system
transitions back to coarse detection. This provides another
trial for detection based on images to confirm or change the
previous coarse goal. Based on the output of coarse detection,
the robot might move from its position allowing a different
perspective for fine detection.

VI. MANIPULATION

The success of manipulation tasks depends on both precise
detection and navigation to ensure that the object of interest
is reachable. Objects to be manipulated were known ahead
of time but absolute position, orientation and surface friction
coefficient of those objects can vary based on environment.
Since we have partial information of the environment, we
can avoid checking for collisions to speed up the planning
and execution process of the task. After determining the
position of the object, the robot would align itself with the
object at a fixed predefined offset to move or pick the object.
We generated a set of predefined standing and grasping
poses for the robot for every manipulation task. Using the
state machine framework explained in Section IV, different
configurations are tried in case of failures.

A: Detect Button

fa=1

B: Align to Press
Button

F: Manual
Execution

fa=1/0

i (C: Press Button

fe=1/0

D: Check Button
Status

fo=1

E: Next State

I Normal Execution e Autonomous Recovery ¢_Manual Recovery !

Fig. 6: Button Pressing Sub-task with Recovery Modes

To demonstrate the process of carrying this out using the
approach explained in Section IV, a simplified example task
of pressing a button is shown in Figure 6. The expanded
representation of the Detect Button state is shown in Figure
5. Successful detection of the button leads to aligning the
robot within reachable distance of the button. After aligning
with the button, the robot proceeds to the Press Button
state followed by checking the expected output after pressing
the button. If the manipulation and perception APIs return
results within a certain margin of error, the state machine
operates in the normal execution mode. In cases where
the robot receives an incorrect detection or is unsuccessful
in pressing the button, the state machine falls into the
autonomous recovery mode where using successive trials
the robot tries to complete the task. In situations where the
autonomous recovery mode fails to complete the task, the

268

state machine transitions to a manual execution mode, which
is the final layer of the state machine. In this mode, the
operator must manually intervene to change the robot pose
such that subsequent trials may succeed. Using these three
modes, the robot can try multiple detections, standing poses,
and motion plans before reaching out to the operator for
assistance.

Humanoid robots have a floating base compared to the
fixed base in other robotic manipulators. Thus, given a
motion plan for a humanoid robot, we need to decide
whether contact between the feet and the ground can be
maintained. The IHMC momentum control framework [22]
uses an underlying quadratic program which minimizes joint
accelerations based on motion tasks, momentum objectives
and ground reaction constraints. While generating motions,
the quadratic program ensures that the Zero Moment Point
(ZMP) or Centroidal Moment Pivot (CMP) [23] remains
inside the support polygon made by the feet to maintain
balance. This forces the robot to modify some trajectories
to maintain balance irrespective of the task objectives. Such
behavior ends up in failure of manipulation sub-task in
certain standing poses but we can overcome the failure by
retrying the plan with a different pose.

% Mass
Robot Mass Height | Torso | Legs Hands | Head
Kg) | (m)
Atlas 1754 1.90 55.26 20.64 21.79 2.29
Valkyrie 135.2 1.88 35.69 36.59 21.92 5.73
iCub 325 1.0 42.53 37.37 14.52 5.56
Nao 5.3 0.57 19.78 45.51 21.81 12.88

TABLE I. Mass distribution of different sized humanoid
robots

Table I shows the mass distribution for four humanoid
robots of different sizes. We observe that a significant amount
of mass resides in the torso for mid- and large-sized robots
such as iCub, Atlas, and Valkyrie. This is due to their overall
bulk and heavy battery packs. Assuming that a robot is in its
default stance with the torso aligned vertically above the hip,
it can be inferred that movement of the torso has the highest
impact for change in Center of Mass (COM) and ZMP during
manipulation in double support phase. Therefore the planner
should try to minimize movement of the torso for better static
stability.

While calculating the inverse kinematics (IK) solution
for a task space point, the solution is biased with different
joint weights. Nonetheless, we employ a simple generic two
step planning process to make sure the solution is biased
based on mass distribution of the robot as shown in Table
I. In the first stage, we plan joint trajectories for the 7-
DOF arm which moves the arm to the closest Euclidean
distance from the object. In the second stage, we plan the
remainder of the trajectory using the complete 10-DOF chain
to achieve the desired position and orientation. This method
provides a simple way to bias the IK solution based on
mass distribution for mid-sized humanoids at the expense
of increased planning time. We confirm the task completion

based on visual inspection and/or task based ROS status
messages.

Percentage Completion
State NE ‘ AR ‘ MR | #AR ‘ Time
Task 1
Detect Panel - Coarse 100% - - 0 8.7
Walk to Panel - Coarse 100% - - 0 19.9
Detect Knobs - Coarse 100% - - 0 4.5
Detect Panel - Fine 90% 10% - 1 10.6
Walk to Panel - Fine 100% - - 0 6.1
Detect Knobs 90% 10% - 1 5.9
Grasp Pitch Knob 100% - - 0 13.3
Fix Pitch 40% 60% - 9 36.7
Grasp Yaw Knob 100% - - 0 18.9
Fix Yaw 0% | 100% - 18 72.0
Detect Finish Box 90% 10% - 1 46.9
Walk to Finish Box 100% - - 0 41.9
Task 2
Detect Rover - Coarse 100% - - 0 8.6
Walk to Rover - Coarse 100% - - 0 25.2
Detect Rover - Fine 100% - - 0 0.6
Walk to Rover - Fine 100% - - 0 34
Detect Panel 60% 20% 20% 3 62.7
Align with panel 100% - - 0 1.6
Grasp Panel 100% - - 0 48.5
Pick Panel 100% - - 0 49
Align with Walkway 100% - - 0 24.8
Detect Solar Array-Coarse 80% 20% - 1 8.5
Walk to Array - Coarse 100% - - 0 29.2
Rotate Panel 100% - - 0 6.5
Detect Solar Array - Fine 100% - - 0 8.9
Walk to Solar Array - Fine 100% - - 0 13.2
Place Panel 100% - - 0 20.6
Detect Button 100% - - 0 5.7
Deploy Panel 100% - - 0 26.3
Detect Cable 80% 20% - 2 54
Pick Cable 100% - - 0 15.6
Detect Socket 60% 40% - 3 5.8
Plug Cable 60% 20% 20% 12 | 105.8
Align with Walkway 100% - - 0 17.9
Detect Finishbox 100% - - 0 | 45.82
Walk to Finishbox 100% - - 0 | 24.19

TABLE II: Results for Taskl and Task 2.

Legend:

NE - Normal Execution AR - Autonomous Recovery
MR - Manual Recovery #AR - Total # of Auto Retries
Time - Avg. Time in simulation seconds

VII. EXPERIMENTS & RESULTS

Experiments are performed in a simulated environment
with restrictions and tasks similar to what a robot might
perform on a space mission such as on Mars. The operator
cannot see the simulation environment and has to rely on
messages that are transmitted to the OCU from the field
computer. The first two tasks from the competition are used
for the experiments. In the first task, the robot must detect
a panel which controls the orientation of a communication
dish. The robot must walk to the panel, rotate two handles
to set the desired yaw and pitch alignment of the commu-
nication dish and then walk to the finish box. In the second
task, the robot must detect and grab a solar panel. Then it
must transport it to a solar array, deploy the panel, pick up
the power cable and plug it into the deployed panel. Lastly,
the robot must detect the finish position and walk to it.

(2) (b)

Fig. 7: Valkyrie RS rotating communication dish knob in the
left figure and plugging cable into solar panel in the right.

Before each run of a task during experiments, the envi-
ronment is altered to have different object configurations,
different model geometries, and varying friction coefficients,
which makes each run unique. As shown in Figure 1, simula-
tion and IHMC controllers are hosted on one machine and the
developed libraries and state machines on another. The field
computer and simulator are connected with a gigabit Ethernet
connection. Network traffic between the field computer and
OCU is restricted to a maximum of 380 bits per second with
a round trip latency of 20 seconds. This environment setup
and communication conditions were designed by competi-
tion organizers to emulate an environment (robot and field
computer) on Mars with the operator (OCU) on Earth.

Table II aggregates the results of 10 runs for task 1 and 5
runs for task 2. The first column of the table is the current
state of the state machine. As mentioned in Section IV, if
the state is executed successfully, it should complete through
one of the three modes: normal execution mode, recovery
mode or manual execution mode. These are represented by
the three columns under percentage completion for each
task. For instance, row 4 can be read as state Detect Panel
- Fine completed 90% of the time in Normal Execution
mode and 10% of the time in Autonomous Recovery mode.
‘Total # of Auto Retries’ column lists how many times the
state failed in the Autonomous recovery mode and had to
be retried again. ‘Average Time (s)’ is the simulation time
required per run for successfully executing a state. Task 1
was completely autonomous and did not require any manual
intervention from the operator. It can be inferred from the
‘Average Time’ column that this approach is time-efficient
as providing manual input with a round-trip latency of 20
seconds would have taken each state more than 20 seconds
to complete. In cases when the state has to be retried, like
the one in state Fix Yaw due to losing grasp of the handle,
it would have taken 20x 1.8 seconds additional per iteration
for communicating between the OCU and field computer.
The effect of manual execution can be seen in results of
state Plug Cable which normally takes less than 60 seconds
if completed in autonomous recovery mode, but due to one
run out of five which required manual execution, the average
time for 5 runs went up to 105.88 seconds.

The involvement of the operator in manual recovery mode
is primary to the success of tasks which could not be

269

handled by the normal or autonomous modes of operation.
The operator has the ability to send manual commands
defined in the APIs to finish the task in absence of the state
machine, however, the time required would be dependent on
the latency of communication and expertise of the operator
controlling the robot. Operator error being one of biggest
performance limitations[7], providing commands to perform
a set of operations like move to a location, re-detect an
object, switch to a specific state, etc. lets the robot make
decisions of planning and validating motion trajectories
instead of the operator.

Two major shortcomings of the simulation environment
provided were that the robot could not stand up after falling
down and it could not pick something up from the ground,
which restricted the flexibility and operational space. Situa-
tions when the robot falls down or drops a tool on the ground
result in a complete failure of the task. Such tasks could
only be automated with system improvements like adding
capabilities to the robot. This would require both software
and hardware upgrades.

VIII. CONCLUSION

In this paper, we formalize an extended state machine to
perform complex tasks for humanoid robots. We successfully
demonstrated how we boost the reliability of the system by
introducing a novel mechanism of three mode operations to
manage state transitions. The state machine does not elimi-
nate the need to write good perception or manipulation algo-
rithms, but does boost the performance of existing algorithms
by suppressing incorrect outputs and retrying under similar
or different conditions. Our experiments confirm that our
method can be successfully used to execute any predefined
task with the proposed structure. Since all experiments were
conducted in unique environments, successful completion of
the tasks exhibit the robustness and reliability of the designed
system and takes a step towards increased autonomy of
humanoid robots.

ACKNOWLEDGMENT

We would like to thank NASA, NineSigma, OSRF and
Space Center Houston for organizing the SRC and giving
us an opportunity to work on this project. We would like
to acknowledge the Dean of Arts and Sciences, Dean of
Engineering, CS, ME, ECE departments and the Robotics
Engineering program for their resources and constant support
during the competition.

REFERENCES

[11 G. Pratt and J. Manzo, “The darpa robotics challenge [competitions],”
IEEE Robotics & Automation Magazine, vol. 20, no. 2, pp. 10-12,
2013.

C. G. Atkeson, B. Babu, N. Banerjee, D. Berenson, C. Bove, X. Cui,
M. DeDonato, R. Du, S. Feng, P. Franklin, et al., “What happened at
the darpa robotics challenge, and why,” submitted to the DRC Finals
Special Issue of the Journal of Field Robotics, 2016.

N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridg-
water, et al., “Valkyrie: Nasa’s first bipedal humanoid robot,” Journal
of Field Robotics, vol. 32, no. 3, pp. 397419, 2015.

[2]

[3]

270

[4]
[5]
[6]

[7]

[8

—

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

(2016) Space robotics challenge - rules. [Online]. Available:
https://perma.cc/RN55-9R6Y
Nasa mars exploration timeline. [Online]. Available:

https://nssdc.gsfc.nasa.gov/planetary/chronology %5Fmars.html

K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in Design
Automation, 1993. 30th Conference on. IEEE, 1993, pp. 86-91.

C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove,
X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J. P.
Graff, P. He, A. Jaeger, J. Kim, K. Knoedler, L. Li, C. Liu, X. Long,
T. Padir, F. Polido, G. G. Tighe, and X. Xinjilefu, “No falls, no
resets: Reliable humanoid behavior in the darpa robotics challenge,” in
2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), Nov 2015, pp. 623-630.

N. Banerjee, X. Long, R. Du, F. Polido, S. Feng, C. G. Atkeson,
M. Gennert, and T. Padir, “Human-supervised control of the atlas hu-
manoid robot for traversing doors,” in Humanoid Robots (Humanoids),
2015 IEEE-RAS 15th International Conference on. 1EEE, 2015, pp.
722-729.

D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460-466,
05 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14542
N. H. T. S. Administration et al., “Preliminary statement of policy
concerning automated vehicles,” Washington, DC, pp. 1-14, 2013.
R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal on robotics and automation, vol. 2, no. 1, pp. 14-23, 1986.
C. Armbrust, D. Schmidt, and K. Berns, “Generating behaviour
networks from finite-state machines,” in ROBOTIK 2012; 7th German
Conference on Robotics, May 2012, pp. 1-6.

P. Allgeuer and S. Behnke, “Hierarchical and state-based architectures
for robot behavior planning and control,” in Proceedings of 8th
Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Conf. on
Humanoid Robots, Atlanta, USA, 2013, pp. 3-5.

M. Foukarakis, A. Leonidis, M. Antona, and C. Stephanidis, “Com-
bining finite state machine and decision-making tools for adaptable
robot behavior,” in International Conference on Universal Access in
Human-Computer Interaction. Springer, 2014, pp. 625-635.

B. Argall, B. Browning, and M. Veloso, “Learning to select state
machines using expert advice on an autonomous robot,” in Robotics
and Automation, 2007 IEEE International Conference on. IEEE,
2007, pp. 2124-2129.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, 2009, p. 5.

SylvainBertrand, J. Pratt, D. Calvert, G. Wiedebach, J. Smith,
T. Koolen, R. Griffin, N. Mertins, D. Stephen, neyssette, S. McCrory,
mahopkins, jcarff, K. Cesare, egalbally, mj fl, P. Abeles, edilee,
pneuhaus, A. B. Filho, W. Rifenburgh, N. Choe, K. Petrnek,
OlgerSiebinga, lbunch, K. Krmer, V. Ivan, admimou, aprvs, and
turbancov2, “ihmcrobotics/ihmc-open-robotics-software: SRC Finals,”
July 2017. [Online]. Available: https://doi.org/10.5281/zenodo.827342
A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Any-
time search-based footstep planning with suboptimality bounds,” in
Proc. of the IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS), 2012.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: An efficient probabilistic 3d mapping
framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189—
206, Apr. 2013. [Online]. Available: http://dx.doi.org/10.1007/s10514-
012-9321-0

T. Foote, “tf: The transform library,” in Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on,
ser. Open-Source Software workshop, April 2013, pp. 1-6.

T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper,
“Virtual network computing,” IEEE Internet Computing, vol. 2, no. 1,
pp. 33-38, 1998.

T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith,
J. Englsberger, and J. Pratt, “Design of a momentum-based control
framework and application to the humanoid robot atlas,” International
Journal of Humanoid Robotics, vol. 13, no. 01, p. 1650007, 2016.
M. B. Popovic, A. Goswami, and H. Herr, “Ground reference points
in legged locomotion: Definitions, biological trajectories and control
implications,” The International Journal of Robotics Research, vol. 24,
no. 12, pp. 1013-1032, 2005.

