
Biped Gait Control based on Spatially Quantized Dynamics

Shuuji Kajita1, Mehdi Benallegue1, Rafael Cisneros1, Takeshi Sakaguchi1, Shin’ichiro Nakaoka1,
Mitsuharu Morisawa1, Hiroshi Kaminaga1, Iori Kumagai1, Kenji Kaneko1, Fumio Kanehiro1

Abstract— We have realized a biped walking control based
on the spatially quantized dynamics (SQD) which discretizes
a continuous system by a constant unit length along the walk
direction. By using SQD, a prescribed sagittal kinematic pattern
can be transformed into dynamically consistent robot motion
in real-time. The lateral motion is generated by preview control
which uses future ZMP predicted by SQD at every control cycle.
A successful biped walk of HRP-2Kai with fully stretched knees
and long stride was realized by the proposed method.

I. INTRODUCTION

Model-based walking pattern generation and control based
on Zero-Moment Point (ZMP) is a systematic technique,
which is sound in terms of engineering [1]. On the other
hand, many people criticize that ZMP-based walking is
unnatural, as it often leads to a bent knee walk profile with
short strides.

This problem was tackled by researchers like Morisawa et
al.[2], Li et al.[3], and other researchers [4], [5], [6]. Ogura et
al.[7] and Miura et al.[8] have realized good looking human-
like biped locomotion by real robots. However, their works
seem to rely on special mechanisms like a pelvis roll joint
or toe joints to ease the mechanical singularities. Recently,
optimization based methods have become popular to achieve
more versatile biped gait generation [9], [10], [11], [12].
Although they provided general methods, the resulting gaits
were not quite natural yet due to the crouching postures used
for singularity avoidance.

Griffin et al. have proposed a trajectory planning based on
instantaneous capture point and step duration optimization
to solve the above-stated problems [13]. Their insight was
that step timings can be used to reduce the required knee
bend at the walking. Similarly, we also proposed to use
of timings for a better gait generation, however, in an un-
precedented manner. In our “Spatially Quantized Dynamics
(SQD)”, we introduced uniform spatial quantization which
results in variable time steps. We demonstrated that our SQD
based method can realize natural-looking biped walking by
computer simulations [14].

In this paper, we describe details of this walking control
method, which enabled our humanoid robot HRP-2Kai [15]
to walk with fully stretched legs and wide stride (Fig.1).
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Fig. 1. HRP-2Kai walking with fully stretched knees

II. SAGITTAL CONTROL

In this section, we discuss the sagittal gait generation and
control as if the robot is constrained in the sagittal plane.
The lateral gait generation and control are discussed in the
next section.

A. Kinematic Walking Pattern

As the first step of our gait generation scheme, we prepare
a series of robot poses for the desired walk in the sagittal
plane. We concentrate on pure kinematics to realize the
desired strides with stretched support legs. The swing legs
trajectories are designed to start from toe-off and to end at
heel-strike.

Figure 2 is an example pattern for three steps of 50cm.
The hip and the center of mass (CoM) calculated from this
pattern is shown in Fig.3. They move up and down a few
centimeters for each step as the consequence of the gait with
stretched support legs.

In this phase, we don’t take into account of the static
balance about the center of mass nor the dynamic balance
about the ZMP.

As a parameter to represent this walking pattern, we take
the horizontal position of the hip joint and discretize it with a
uniform grid size of ∆x. We use index variable k to represent
a node of the grid. The hip position at the k-th node is given
as

xk = ∆x · k (k = 0 · · ·N), (1)

where N is determined by the total walking distance D as
N = ⌊D/∆x⌋. In this example, we used ∆x = 0.001m for
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Fig. 2. Kinematic walking pattern
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Fig. 3. Hip and CoM heights

the walking pattern of D = 1.5m, thus we have N = 1500
and 1501 poses in total.

A kinematic walking pattern is represented by the follow-
ing series of vectors:

q∗
k = q(xk) (k = 0 · · ·N), (2)

where q(xk) is a pose vector which consists of the joint
angles when the hip is at xk.

Note that this kind of spatial gait prescription can be
observed in prior research like the Hybrid Zero-Dynamics
approach [16], [17] and the PDAC framework [18]. The orig-
inality of our approach exists in the treatment of dynamics
as explained in the next subsection.

B. Spatially Quantized Dynamics

We expect that the robot dynamics can be approximated
by linear inverted pendulum model (LIPM)[19], [20] such
that the hip horizontal position x corresponds to the center
of mass (CoM) location.

ẍ = ω2(x− p), (3)

ω :=
√
g/z,

where z is the average height of CoM of the walking pattern,
p is ZMP and g is gravity acceleration. Note that we can also
use the real CoM height, which varies in time as in Fig.3.
Nevertheless, we treated it as an averaged constant value
because of its simplicity and effectiveness confirmed by our
experiments.

Unlike an ordinary discretization with unit time, we quan-
tize this system along the uniform spatial grid of (1). Let us
look at the state transition from the k-th node to the (k+1)-th
node of the grid,

(tk, xk, vk) → (tk+1, xk+1, vk+1).

Since we already know the position x, let’s take a look
at the transition of time. The time varies from tk to tk+1

depending on the speed vk as

tk+1 = tk +∆tk,

∆tk :=
∆x

vk
. (4)

Note that the above equation requires that vk ̸= 0. This is
obvious because the CoM would take infinite time to move
from xk to xk+1 if its speed is zero (vk = 0). To avoid
this divide-by-zero problem, we introduce a lower bound on
the speed which can be regarded as being almost stationary.
We therefore determined the lowest speed as ϵ = 0.005m/s
and used it as the initial/terminal speed for simulation and
control. At this lowest speed, the CoM takes ∆t = 0.2s to
move ∆x = 1mm, which is the distance between one node
and its neighbor.

The change of speed from k to k + 1 is given as

vk+1 = vk + ẍ∆tk. (5)

By substituting the variable time step ∆tk (4) and the
acceleration of LIPM (3), we obtain

vk+1 = vk + ω2(xk − pk)
∆x

vk
. (6)

This equation represents the Spatially Quantized Dynam-
ics of LIPM. It is nonlinear since vk appears in the denom-
inator of the second term of the equation’s right hand side,
thus we can not apply ordinal control theories.

C. ZMP optimization

Suppose that we have a robot following the Spatially
Quantized Dynamics (SQD) of (6) and that should realize
the commanded value for its speed and ZMP as vcmd and
pcmd. We define a cost function to minimize as

J := (vk+1 − vcmd)2 + β(pk − pcmd)2, (7)

where β is a weight to specify the importance of the ZMP
error.

We can solve this optimization problem by substituting
the SQD (6) into this cost function and by zeroing its partial
derivative about pk. The ZMP which minimizes the cost J
is obtained as

pk =
βpcmd −A(B − vcmd)

β +A2
(8)

A := −∆x

vk
ω2 , B :=

∆x

vk
ω2xk + vk.

Let us call this a Local Optimization, as it locally opti-
mizes the speed and the ZMP between two adjacent nodes.
Figure 4 shows the ZMP and speed calculated by using (6)
and (8).
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Fig. 4. ZMP and speed obtained by optimization

In this example, we specified the commanded ZMP pcmd

for three 50cm steps (broken line in the upper graph of
Fig.4). For the commanded speed vcmd, a trapezoidal pattern
was specified so that it increases from the lowest speed ϵ to
0.5m/s within a half-step, keeps constant in the following two
steps, and decreases to ϵ at the final half-step (broken line
in the lower graph of Fig.4). We used the weight β = 1 for
this example. The ZMP obtained by the local optimization is
plotted as a bold red line which follows well the commanded
ZMP. The speed obtained by the local optimization is plotted
by a bold blue line in the bottom of Fig.4, which waves about
the reference speed (broken line). This waving speed pattern
is typically observed in dynamic biped walking. At the end of
walking (x = 1.5m), however, the speed still remains 0.2m/s
meaning the robot does not stop. This occurs because (7)
considers only local state information.

A feasible walking pattern can be obtained by an opti-
mization procedure, considering a global cost function as
follows

minimize
pk

JG :=
N∑

k=0

(vk − vcmd
k )2 + β(pk − pcmd

k )2

subject to vk+1 = vk + ω2(xk − pk)
∆x

vk
,

∥vk∥ > ϵ.

(9)

The cost function JG is a sum of the local costs (7), from
start to stop of the walking pattern.

To solve this non-linear optimization problem, we
used Differential Dynamic Programming (DDP) by Tassa,
Mansard and Todorov [21]. The result is shown by thin red
line (ZMP) and thin green line (speed) of Fig.4. We can
observe a smooth speed pattern which gets stopped at the
end of the walking.

We decided to create an offline walking pattern using
DDP. Our walking pattern consists of the reference ZMP,
the reference speed, and the kinematic walking pattern (2)
as

{p∗k, v∗k, q∗
k} (k = 0 · · ·N), (10)

where p∗k and v∗k are the ZMP and the speed generated by
DDP optimization, respectively.

Let us call this data set a “Spatial Walking Pattern.” Our
robot uses this spatial walking pattern prepared in advance
and uses local optimization (8) to accommodate the pattern
to the physical robot state in real-time. This is explained in
the next section.

D. Space to time conversion algorithm

For our robot HRP-2Kai, we used a constant control cycle
of T = 2ms, such that target joint angles must be calculated
at every cycle [15]. Contrarily, the SQD time step ∆t changes
by the walking speed. At low speed, we have T < ∆t where
several time steps T passes within one ∆t. At high speed,
we have ∆t < T where multiple SQD steps passes within
one control cycle T . To handle this non-trivial problem, we
developed an algorithm which is presented by the pseudo
code of Algorithm 1.

Algorithm 1: SQD gait control
Data:

current time tnow
robot state vsens, psens

spatial pattern v∗k, p∗k, q∗
k (k = 0 · · ·N)

Result: q
1 if first time then
2 k = 0;
3 t0 = tnow;
4 v0 = ϵ;
5 end
6 while true do
7 xk = ∆x · k;
8 vcmd = v∗k +Kv(v

sens − v∗k);
9 pcmd = p∗k +Kzmp(p

sens − p∗k);
10 A = −(∆x/vk)ω

2;
11 B = (∆x/vk)ω

2xk + vk;

12 pk = βpcmd−A(B−vcmd)
β+A2 ;

13 a = ω2(xk − pk);
14 ∆t = ∆x/vk;
15 vk+1 = max(vk + a ·∆t, ϵ);
16 tk+1 = tk +∆t;
17 if tk+1 ≥ tnow then
18 break;
19 else
20 k = min(k+1, N) ;
21 end
22 end
23 h = (tnow − tk)/∆t;
24 q = (1−h)q∗

k + hq∗
k+1;

This algorithm is executed once for every control cycle T .
Therefore, the timer variable tnow gets incremented by T in
every cycle. The algorithm takes tnow as its input, as well
as the measured robot state vsens (actual robot speed), psens

(actual ZMP), and the spatial walking pattern. Its output is
a vector of the joint angles q for the current cycle.

In this algorithm, lines 1 through 5 initialize the parame-
ters only at the very first execution. For example, line 2 zeros
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the index k to point at the beginning of the spatial walking
pattern.

Lines 6 through 22 are the essential part to update SQD.
Line 7 calculates the reference CoM position form the index
k. Lines 8 and 9 generate the command values for the local
optimization from the measured robot state.

vcmd = v∗k +Kv(v
sens − v∗k) (11)

pcmd = p∗k +Kzmp(p
sens − p∗k) (12)

where Kv,Kzmp are feedback gains for the speed and
the ZMP. Depending on these gains, the real robot state
vsens, psens can affect the SQD dynamics by changing the
instantaneous command value for the local optimization. For
example, a large Kzmp induces a speed change depending
on the ZMP error, which effectively reduces the foot landing
vibration.

Lines 10 through 12 calculate the optimal ZMP by (8).
Following lines 13 and 14 correspond to the SQD update
using it. Line 15 uses a ‘max’ function to prevent that the
updated speed falls below the minimum speed ϵ. The next
node time is obtained in the next line 16. Line 17 checks if
the next node time is at the future of tnow or not, and if yes,
it quits the loop at line 18 and jumps to line 23. If the node
time is still in the past, the algorithm increases the index k
and goes back to line 7 to repeat the SQD calculation.

Line 23 calculates the parameter h which indicates the
relationship between tnow and the latest node time by

h = (tnow − tk)/∆t. (13)

It is guaranteed that 0 < h ≤ 1 since following relationship
is satisfied by lines 17 through 21:

tk < tnow ≤ tk +∆t = tk+1 (14)

Finally, line 24 generates the current joint angles by
interpolating the adjacent node data of the spatial walking
pattern.
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Figure 5 shows the ZMP and the speed obtained by this
algorithm from the experiment of Fig.1. The broken line in
the upper graph is the ZMP of the spatial walking pattern
and the bold line is the actual ZMP. The broken line in the
lower graph is the speed v∗ and the bold line is the actual
speed. We can observe a large deviation of the walking speed
and the ZMP from the walking pattern, whereas the errors
vanish at the end of the walking.
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Fig. 6. SQD iteration

Figure 6 indicates the number of iterations of line 6
through 22 of Algorithm 1 executed in the walking control.
Notice that the number of the SQD iterations is once or twice
at the slow walk speed around x = 0m, and x = 1.5m,
whereas it increases to five times at the high walk speed
around x = 0.25m, x = 0.75m, and x = 1.25m. Hence our
method has a drawback which requires heavier calculation
at higher walking speed. Nevertheless, it does not become a
serious problem since each iteration is very light as shown
in Algorithm 1.

E. Control result in the sagittal plane

Using the algorithm of the former subsection, our hu-
manoid robot HRP-2Kai could successfully realize a walk
with fully stretched knees, heel contact, and toe off.

Figure 7 shows the experimental data along the sagittal
plane. It shows the CoM (bold black line), the ZMP (bold red
line), and the support polygon (shaded area) in vertical dotted
lines indicating the touchdown and liftoff. We can confirm
that the ZMP is kept well inside of the support polygon,
while the CoM sometimes goes outside of it, which indicates
a dynamic walking with a certain degree of stability margin.

III. LATERAL CONTROL

A. Previewing lateral ZMP

In our control algorithm, each gait period varies due to the
SQD optimization which is affected by the CoM speed and
the ZMP of the controlled robot. To adapt this variable gait
cycle, it is necessary to generate a dynamically consistent
lateral CoM motion in real-time.

For this purpose, the lateral ZMP data p∗y were added to the
spatial walking pattern as shown in Fig.8 taking the sagittal
CoM x as a parameter. From this information, our controller
generates a Previewed ZMP which is used to generate the
lateral CoM motion, as explained later. The pseudo code to

78



179 180 181 182 183 184 185 186 187 188 189
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time [s]

x
 [
m
]

 

 

CoM(X)

ZMP(X)

Fig. 7. CoM and ZMP in the walking direction
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calculate the previewed ZMP in every control cycle T is
shown in Algorithm 2.

Algorithm 2: Generate previewed ZMP
Data:

current time tnow
current node k
preview horizon T prev

spatial pattern v∗k, p∗x,k, p∗y,k (k = 0 · · ·N)
Result: pprevy

1 s = k;
2 while tk < tnow + T prev do
3 xs = ∆x · s;
4 A = −(∆x/vs)ω

2;
5 B = (∆x/vs)ω

2xs + vs;

6 ps =
βp∗

x,s−A(B−v∗
s )

β+A2 ;
7 a = ω2(xs − ps);
8 ∆t = ∆x/vs;
9 vs+1 = max(vs + a ·∆t, ϵ);

10 ts+1 = ts +∆t;
11 s = s+ 1;
12 end
13 L = ⌊Tprev/T ⌋;
14 pprevy,k:k+L = Interpolate(tk:s, p∗y,k:s, T, L);

The algorithm takes the current time tnow, the current node

number k, the preview horizon T prev , and the spatial walking
pattern as its input. Line 1 sets the current node number to s
which will increase in the following loop. Line 2 through 12
repeatedly calculate the SQD dynamics towards the future
until the node time reaches tnow +T prev . At the end of this
loop, we obtain vectors py,· and t· from k to s. In line 14,
these vectors of variable time step are converted into a vector
of constant time step T . Note that we used the following
notation to simplify the pseudo code,

py,k:s := [py,k, py,k+1, · · · , py,s] ,
tk:s := [tk, tk+1, · · · , ts] ,

pprevy,k:k+L :=
[
pprevy,k , pprevy,k+1, · · · , p

prev
y,k+L

]
.

The function Interpolate() takes the vector of node time
tk:s, node ZMP py,k:s, unit time T , and the preview data
length L, then returns a previewed ZMP vector pprevy,k:k+L.

Figure 9 shows the ZMP generated by this algorithm. We
chose T prev = 1.6s as the preview horizon, thus a vector
of previewed ZMP for future in 1.6s is generated at every
control cycle.
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B. Lateral motion generation

Using the previewed ZMP, we calculate the corresponding
CoM by the following steps. First, we define a state vector
which consists of the lateral CoM’s position, velocity, and
acceleration.

yk ≡ [ y(kT ) ẏ(kT ) ÿ(kT ) ]T (15)

Then we take the jerk (time derivative of acceleration) as
its input.

uk =
...
y (kT ) (16)

Assuming a cart-table model [22], a discrete system
dynamics which takes a jerk input and a ZMP output is
represented as

yk+1 = Ayk + buk, (17)

py,k = cyk, (18)
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where

A ≡

 1 T T 2/2
0 1 T
0 0 1

 , b ≡

 T 3/6
T 2/2
T

 ,

c ≡ [ 1 0 −z/g ].

This dynamics generate the desired lateral CoM motion
under the following control by using a previewed ZMP:

uk = −Kyk −Kse
sum
k +

L∑
j=1

gjp
prev
y,k+j , (19)

esumk+1 = esumk + pprevy,k − py,k, (20)

where K,Ks, and gj are the state feedback gain, the gains
for the ZMP error, and the preview gain. The ZMP error is
accumulated on esumk by (20).

We can calculate the control gains K,Ks, and gj by using
the LQR framework. Its details are explained in our former
works [22], [23].

C. Experimental result

Figure 10 shows the generated lateral CoM and ZMP
during the experiment of Fig.1. It plots the CoM (black bold
line) and the ZMP (red bold line) showing stable lateral
walking motion. This lateral CoM motion is merged with
the sagittal walking pattern generated in section II-D.
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Fig. 10. CoM and ZMP in the lateral direction

Figure 11 shows the vertical ground reaction force during
the experiment. We can recognize a regular support force
exchange except for the vibration after every touch down.
This vibration occurred because of the touchdown impact
caused by the body up-down motion as a result of the fully
stretched knee support.

The lateral CoM and ZMP during the three steps are shown
in Fig.12. We can observe the ZMP trajectory shown in red
bold line moving in the support polygon (blue gray area)
with sufficient safety margin. The CoM trajectory was also
well controlled contributing the steady and successful leg
exchanges.

Figure 13 shows the snapthots taken from the video of
the walking experiment. The lateral motion described in
this section was marged with the sagittal pattern (Fig.2) to
generate 3D motion. Nevertheless, the sagittal pattern was
well preserved, and we can observe a biped gaint with fully
stretched legs as expected.
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Fig. 11. Vertical ground reaction force of the experiment
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To realize this stable walking, we have also developed a
stabilizer which can overcome the mechanical singularity at
double support with fully stretched knees. It will be reported
in our next paper.

IV. CONCLUSIONS

We have implemented a gait generator from the spatial
walking pattern, the lateral pattern generator, and the ZMP
based stabilizer for the onboard computer of HRP-2Kai (Intel
Core i7, 3.1GHz), and it stably ran at every 2ms.

There exist, at least two issues to be answered. Firstly, it is
still unclear what is the real benefit of SQD compared with
conventional methods. One possible answer is that a parame-
ter to represent a task progress should be taken from the task
space rather than the uniform time. As the classical example,
one should recall the solving process of the brachistochrone
curve, anyway, we need further consideration.

Secondly, the feedback control based on local optimization
in Section II.C and D lacks solid theoretical background.
Although its effectiveness is empirically shown, the feedback
gains are hand tuned by simulations and experiments. We
must appropriately associate our SQD based feedback to the
conventional control theory.

Despite of the above problems, the essence of SQD
approach is simple and it actually works. We believe that our
approach will rewrite the future of the biped robot control.
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