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Abstract— A balance stabilizer is proposed that has the
capability of absorbing high-energy collisions without reactive
stepping. The stabilizer is based on the spatial dynamics
formulation and has the unique feature that the trunk rotation
can be specified in an independent way from the desired rate
of change of the system (centroidal) angular momentum. The
formulation is based on the momentum equilibrium principle
for floating-base robots and the relativity of angular momentum
revealed in the companion paper [1]. The stabilizer injects
angular momentum damping via the so-called relative angular
acceleration (RAA) derived from the reaction null-space (RNS)
of the system. The damping is used to increase the robustness
of the balance stabilizer at critical states such as foot roll.
It is shown how to embed the RAA stabilizer into a joint-
torque controller whereby the motion and force optimization
tasks are solved in a single step, yielding a formulation that
does not rely upon a general solver. The performance of the
controller is examined via simulations whereby external impact-
type disturbances are applied to the robot. One part of the
impact energy is accommodated via the trunk rotations by
lowering the respective PD feedback gains immediately after
impact onset. It is then dissipated with higher gains, while
recovering the stability of the posture. Another part of the
impact energy yields foot roll; this part is dissipated with the
angular momentum damping realized through an appropriate
arm motion. When in a single stance, the angular momentum
damping control yields a movement in the swing leg in addition
to that in the arms. The motion in the leg injects additional
angular momentum damping, such that a high-energy impact
can be accommodated that would otherwise require a reactive
stepping.

I. INTRODUCTION

The simple inverted pendulum plus reaction wheel model
was used in the design of a biped locomotion controller
in [2]. It became apparent that the centroidal angular mo-
mentum and its rate of change play an important role in
the balance control of humanoid robots [3]. Since then, a
number of balance controllers have been designed utilizing
the centroidal angular momentum based concepts, e.g. the
centroidal moment pivot (CMP) [4], the capture point [5]
and the virtual repellent point (VRP) [6]. Centroidal angular
momentum control has become an indispensable part of bal-
ance controllers, especially in gait control while negotiating
irregular terrain [7] or while stepping over partial footholds
[8]. In the latter case, it was observed that an unstable contact
could be stabilized with a lunging maneuver generated as the
outcome of a spatial momentum optimization task.

In fact, the important role of the upper body movements
in balance control has been pointed out some time ago

The authors are with the Graduate School of Engineering, Tokyo City
University, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158-8557, Japan. Cor-
responding author: D. Nenchev (Y. Kanamiya) nenchev@ieee.org

by a number of researchers. In [9], the trunk motion was
employed to stabilize the dynamic gait of a humanoid robot.
In [10], a “windmilling” movement in the arms was gener-
ated as the outcome of an iterative, quadratic-programming
(QP) optimization approach. Such type of response was
also produced in the field of animation [11]. The centroidal
momentum balance controller in [12] generated an “uninten-
tional” arm motion.

The balance controllers developed so far are based almost
exclusively on the simple reaction-wheel on inverted pendu-
lum model, and hence, on the centroidal angular momentum
and its rate of change. Note, however, that although useful
the model cannot completely reveal the mechanism behind
the above mentioned complex upper-body motion behaviors,
including the movements in the upper limbs. It should
also be noted that research in the field of underactuated
robots on a floating-base, such as free-floating space robots,
manipulators mounted on a flexible base and macro-mini
manipulators (i.e. a small-size manipulator mounted at the
tip of a large-size one), has shown that the centroidal angular
momentum can be expressed as the sum of two components:
a composite rigid-body (CRB) component that is determined
by a system state with locked joints, and the coupling angular
momentum component [13]. The latter depends on the joint
rates; the joint rates are mapped via the coupling inertia
matrix, i.e. via a coordinate form representation of the so-
called mechanical connection. The substantial role of this
map in the modeling and control of underactuated systems
in general is well known [14], [15]; in the field of humanoid
robotics, though, little attention has been paid so far.

Insight into the role of the coupling angular momentum
in velocity-based whole-body balance control of a humanoid
robot is given in the companion paper [1]. It is pointed
out that the coupling angular momentum is always in dy-
namic equilibrium with the relative angular momentum. This
relation represents the momentum equilibrium principle in
balance control. Based on this principle, the relative angular
momentum/velocity (RAM/V) controller was designed. One
unique feature of this controller is that trunk rotation can
be specified as a motion subtask that is independent from
the centroidal momentum control subtask. Another unique
feature of the RAM/V controller is that foot rotation can be
stabilized by making use of a reactionless motion generated
from within the reaction null space (RNS) that is the null
space of the coupling inertia matrix [13].

The aim of this work is to present a second-order,
acceleration-based formulation of the RAM/V controller, re-
ferred to as the relative angular acceleration (RAA) stabilizer.
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With the RAA stabilizer, angular momentum damping can be
injected into the system to increase the robustness of torque-
based whole-body balance control. We focus on the handling
of critical states such as a rolling foot. The robot may
arrive at a critical state either by an infeasible input (self-
destabilization) or by an external impact. It will be shown
how to embed the RAA stabilizer into a torque controller.
The torque controller can ensure an appropriate body-wrench
(gravity plus spatial momentum) distribution at the contacts,
via the divergent-component-of-motion (DCM) generalized
inverse [16], taking into account the friction cone constraints
and the constraints that keep the net center of pressure
(CoP) within the base-of-support (BoS). The performance
of the RAA controller will be examined through simulations
with impact scenarios in two critical situations. First, the
capability of the controller to accommodate an impact in
a double stance, with a posture such that the net CoP is
located within the vicinity of the BoS boundary will be
demonstrated. Second, the capability of accommodating a
high-energy impact when in a single stance will be demon-
strated. The magnitude of the impact is such that if the
existing (capturability) theories [17] were used, a reactive
step would be required to accommodate it.

II. BACKGROUND AND NOTATION

The generalized coordinate vector of a floating-base robot
is denoted by q = (XB ,θ). θ ∈ <n is the joint variable
vector, XB ∈ SE(3) is the position and orientation of the
(non-actuated) base (or root) link. The generalized velocity
is defined as a quasivelocity, i.e. as a velocity expressed
relative to a configuration-dependent frame [18]. Note that
the quasivelocity is not necessarily the time derivative of
the generalized coordinates. Let VB =

[
vTB ωTB

]T
denote

the twist of the base link; vB ,ωB ∈ <3 are the velocity
of a fixed point on the base-link (e.g. the origin of the
coordinate frame) and the angular velocity, respectively.
These and all other quantities are expressed in the inertial
frame. Furthermore, let VM =

[
vTC ωTB

]T
denote a twist of

a “mixed” character, where vC is the velocity of the center of
mass (CoM) of the robot. Two quasivelocity vectors can then
be specified as q̇B =

[
VTB θ̇T

]T
and q̇M =

[
VTM θ̇T

]T
.

Note that there is some abuse in the notation: the over-dot
in q̇(◦) does not necessarily imply the integrability of this
quantity.

A. Equation of motion

The equation of motion, of the unconstrained humanoid
robot can be written as follows [19]:[

MC HCM

HT
CM Mθ

][
V̇M
θ̈

]
+

[
C
cθ

]
+

[
G
0

]
=

[
0
τ

]
+

[
Cc
J T
c

]
Fc, (1)

where

MC ∈ <6×6 : CRB inertia tensor w.r.t. the CoM,
Mθ ∈ <n×n : link inertia matrix,
HCM ∈ <6×n : coupling inertia matrix,
C ∈ <6 : CRB and coupling nonlinear force,
cθ ∈ <n : link nonlinear force,
G ∈ <6 : CRB gravity force vector,
τ ∈ <n : joint torque vector,
Cc ∈ <6×c : contact map,
Jc ∈ <c×n : constraint Jacobian,
Fc ∈ <c : contact (reaction) wrench,
c ∈ <1 : number of the contact constraints.

The upper row of the above equation represents the spatial
dynamics of the system. It is written in expanded form as:[

ME 0 0
0 IC HC

]v̇Cω̇B
θ̈

+

[
0
cm

]
+

[
g
0

]
= CcFc. (2)

M is the total mass, E is the identity matrix, g is the
(negative) gravity force, IC(q) denotes the centroidal in-
ertia matrix of the CRB, HC(q) ∈ <3×n is the coupling
inertia for the rotational motion, cm = İCωB + ḢC θ̇ is a
nonlinear velocity-dependent centroidal moment. Note that
since the mixed quasivelocity is used in the notation, the
CoM dynamics in the upper row are completely decoupled
from the joint motion. This yields a significant advantage in
balance controller design, as noted in [20] and also in [21].

The first-order instantaneous motion of the robot is con-
strained by the contacts as follows:

CTc (q)VM + Jc(q)θ̇ = 0. (3)

B. System angular velocity, the centroidal twist and the
centroidal quasivelocity

The left-hand side in the lower part of (2) stands for
the rate of change of angular momentum. Note that this
quantity can be integrated w.r.t. time. The centroidal angular
momentum of the robot is then obtained as

lC = ICωB +HC θ̇. (4)

This relation can be rewritten in terms of angular velocity
by premultiplying it with I−1C , i.e.1,

ωC = ωB + Jω(θ)θ̇, (5)

where ωC ≡ I−1C lC and Jω(θ) ≡ IC(q)−1HC(q). Matrix
Jω(θ)∈ <3×n is a Jacobian-like quantity; it plays a signifi-
cant role in the following derivations.

The above relation represents the instantaneous angular
motion of the floating-base robot. Note that although ωC has
the meaning of an angular velocity, it does not associate with
a specific physical body; ωC will be therefore referred to as
the system angular velocity. With this notation, the centroidal
twist and the centroidal quasivelocity are defined as VC =[
vTC ωTC

]T
and q̇C =

[
VTC θ̇T

]T
, respectively.

1The CRB inertia tensor IC(q) is positive-definite (p.d.) at any config-
uration of the robot.
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In the following derivations, we will make use of the time
differential of (5), that is

ω̇C = ω̇B + Jωθ̈ + J̇ωθ̇. (6)

Angular acceleration ω̇C will be referred to as the system
angular acceleration.

III. RELATIVE ANGULAR ACCELERATION

Noting that the spatial inertia of the CRB is p.d., the spatial
dynamics in the upper row of (1) can be rewritten in terms
of spatial acceleration by premultiplying it with M−1C :

M−1C HCM θ̈ + M−1C
(
C′ + G

)
= V̇C − V̇M , (7)

where C′ ≡ C −M−1C ṀCVC . The spatial acceleration V̇C ≡
M−1C CcFc is referred to as the spatial acceleration of the
system; it should be generated in compliance with the force-
task constraints, i.e. the friction cone and the CoP-in-BoS
constraints. The CRB spatial acceleration V̇M , on the other
hand, should be generated in agreement with the motion task
constraints. The finite difference on the right-hand side of (7)
exhibits the relative character of the spatial accelerations in
a floating-base system; this character can be deduced from
the momentum equilibrium principle revealed in [1].

With the notations introduced in Section II, relation (7)
can be represented componentwise as

ag = v̇CR
− v̇CI

(8)

and

Jωθ̈ = ω̇C − ω̇B + I−1C (İCωC − cm) (9)

Vector ag stands for the acceleration of the gravity force. It
is interesting to note that this quantity can also be interpreted
as a relative CoM acceleration, i.e.

∆v̇C = v̇CR
− v̇CI

.

The CoM acceleration component v̇CR
≡ v̇C(Fc) stems

from the reaction (contact) wrenches. This component is
clearly distinguished from the inertial CoM acceleration
component, v̇CI

≡ v̇C . The reaction component v̇CR
com-

pensates the gravity CoM acceleration ag at all postures,
for any inertial acceleration of the CoM. This means that
the effect of the gravity field on the spatial dynamics can be
completely ignored.

Next, focus on the angular acceleration relation (9). By
comparison with (6) it becomes apparent that the nonlinear
acceleration term I−1C (İCωC−cm) = −J̇ωθ̇. The remaining
two terms on the right-hand side of (9) are denoted as

∆ω̇ = ω̇C − ω̇B . (10)

The finite difference (10) will be referred to as the relative
angular acceleration (RAA). This is a relativity relation; it
leads us to the important conclusion that the base rotation
task (expressed with ω̇B) can be specified in an independent
way from the system (centroidal) rotation task (expressed with
ω̇C). This is also true for the angular velocities, as shown in
[1].

IV. ACCELERATION-BASED CONTROL COMPONENTS

The above revelation about the possibility for independent
assignment of two rotational-dynamics tasks via the angular
accelerations means that three control components can be
designed, with two control inputs for the linear and angular
components of the dynamic CRB trajectories and a third
one for the system (centroidal) rotation dynamics. As far
as we know, none of the balance controllers reported so
far in the literature offers the capability of an independent
task assignment for the rotation of the trunk; in the existing
controllers, the rotation of the trunk is solely determined by
the outcome of the centroidal dynamics task, see e.g. [8],
[22].

A. CRB trajectory tracking

Since our derivation is based on mixed quasivelocity s.t.
the linear motion component of the CRB (i.e. the CoM
motion) is completely decoupled from the CRB rotation,
the CRB trajectory tracking task can be formulated as a
kinematic control law that is conventionally used in fixed-
base manipulator trajectory tracking control, i.e.

V̇refM =

[
v̇refC

ω̇refB

]
=

[
v̇desC + KvC ėpC + KpCepC
ω̇desB + KωB

eωB
+ KoBeoB

]
. (11)

epC , eoB , eωB
∈ <3 denote the errors for the CoM po-

sition, the base-link orientation2 and the base-link angular
velocity, respectively. K(◦) ∈ <3×3 are p.d. feedback gains,
determined much in the same way as used in the fixed-base
robotics field. Note that (◦) ref and (◦) des are used to denote
control input and desired quantities, respectively.

With regard to the CoM motion tracking component, in
the case of a humanoid robot it is much more preferable to
employ the DCM/VRP stabilization approach [6] in lieu of
the above conventional-type feedforward plus PD feedback
control. To this end, replace v̇refC in (11) with

v̇refC = ωX
(
ṙdesX + KX(rdesX − rX)− vC

)
(12)

where rX ∈ <3 is the DCM, ωX is the natural angular
frequency of the DCM dynamics and KX is a p.d. feedback
gain.

Assuming the contacts are stable and the Jacobian in the
constrained-motion directions is full rank (i.e. the contact
constraints are independent), the desired CRB trajectories
can be tracked with asymptotic stability under the following
kinematic control law:

θ̈ = −J +
c

(
CTc V̇

ref

M + hc
)

+N
(
Jc

)
θ̈u. (13)

Here (◦)+ denotes the pseudoinverse, N(◦) is a null-space
projector, θ̈u is an arbitrary joint acceleration vector to be
determined in what follows and hc = J̇cM θ̇ + Ċ

T

c VM is a
non-linear term. This control law was derived from the time
differential of the instantaneous-motion constraint (3).

2We define the angular error in terms of the Euler axis/angle notation
since the trunk rotation is limited.
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B. Balance stabilization with the RAA

There are ongoing efforts to develop motion/force trajec-
tory generation methods s.t. the generated CRB trajectories
will be contact-consistent. To the best of our knowledge,
however, there is no such method yet. Thus, so-called “in-
admissible inputs” [22] should be expected. Also, the errors
in modeling and elsewhere may lead to contact violation,
resulting e.g. in a foot roll and ultimately in the loss of
balance. This problem can be addressed by adding a RAA
control component in the control joint acceleration (13). To
this end, determine the joint acceleration θ̈u in (13) with the
help of the angular acceleration relation (9). As a result, one
arrives at:

θ̈ref =−
(
E − J+

ωJω
)
J +
c CTc V̇

ref

M + J+
ω∆ω̇ref (14)

+N
(
Jc

)
N
(
Jω
)
θ̈refu + θ̈nl.

Here Jω = JωN
(
Jc

)
is the restriction of Jω by the

null space of the constraint Jacobian. The joint acceleration
component

θ̈nl = −
(
E − J+

ωJω
)
J +
c hc − J+

ω J̇ωθ̇ (15)

is a nonlinear velocity-dependent joint acceleration. There
are three control inputs (or tasks): (1) the CRB trajectory
tracking control task defined by V̇refM , (2) the RAA control
input, ∆ω̇ref = ω̇ ref

C − ω̇ ref
B , that is used for system

(centroidal) angular momentum rate of change control and
(3), an additional control input, θ̈refu , that can be used to
control the trajectories of the swing foot (e.g. during the
single stance phase of a gait) and/or to control the motion in
the joints (e.g. to avoid reaching the joints limits or to inject
joint damping).

The control law (14) will be referred to as the RAA
balance stabilizer. Apparently, the three tasks are arranged
in a hierarchical structure, as is usually done to ensure that
task conflicts can be handled in an appropriate way [23]. We
should note that, in our experiments, we barely encountered
such conflicts, though, mainly because the Jacobian-like
matrix Jω becomes rarely rank-deficient.

C. RAA input design for angular momentum damping

In order to understand the role of the independent control
of the rate of change of the system (centroidal) angular
momentum, consider the following two constraints for mo-
mentum conservation:

ωrefC = 0⇒ ω̇refC = −DωωC , (16)

∆ωref = 0⇒ ∆ω̇ref = −Dω∆ω. (17)

The upper constraint conserves the system (centroidal) angu-
lar momentum, the lower one conserves the coupling angular
momentum. Dω denotes a nonnegative damping gain. With
these formulations, two types of angular momentum damping
can be injected into the system. In this work, we focus on
coupling angular momentum conservation as given in (17).
As noted in [1], the coupling angular momentum control
input ∆ωref = 0 will force the robot to behave as a CRB.
This type of behavior can be used as a neutral response after

contacts destabilization. It does not guarantee, however, the
recovery of the contact stability. To recover the stability, the
energy that led to contact destabilization has to be dissipated.
This is done with the negative damping term in (17).

V. JOINT-TORQUE CONTROLLER

The three acceleration-based control components, dis-
cussed in the last section, can be embedded into a joint
torque controller. In this way, it becomes possible to address
the body-wrench distribution problem and thus, to satisfy
the friction cone and the CoP-in-BoS constraints. The body
wrench is the sum of the gravity wrench and the rate of
change of the spatial momentum. The latter is obtained in
a straightforward way from the RAA stabilizer output (14)
and the reference CRB trajectories V̇refM in (11) as:

L̇refC = AC q̈
ref
M + ȦC q̇M (18)

where L̇C denotes the system spatial momentum and

AC =
[
MC HCM

]
∈ <6×(6+n).

Note that AC is similar to the centroidal momentum matrix
appearing in [12], [24].

The reference contact wrenches can be computed by solv-
ing an optimization task for the wrench distribution problem.
Here, we employ a noniterative least-squares optimization
approach:(

Fc
)ref

= C−WDCM
c (L̇refC + G) +N(Cc)Fcu (19)

where C−WDCM
c denotes the DCM generalized inverse [16]

that is a weighted generalized inverse of the contact map.
WDCM stands for the weighting matrix. The null-space term
on the r.h.s. is used to deal with the friction cone constraints
[16].

The unique joint-space inverse dynamics (JSID) solution
can be obtained from the lower row of (1) as:

τ = HT
CM V̇

ref

M +Mθθ̈
ref + cθ −J T

c

(
Fc
)ref

. (20)

The block diagram of the joint-torque controller is shown in
Fig. 1.

VI. IMPACT ACCOMMODATION BY CONSERVING THE
COUPLING ANGULAR MOMENTUM

In general, an impact can be accommodated with an
appropriate rate of change in the linear or the angular
component of the spatial momentum, or in the total spatial
momentum. When the ground projection of the extrapolated
CoM [25] (i.e. the instantaneous capture point (ICP) [17])
is located in the vicinity of the BoS boundary, even a low-
energy impact could invoke a critical postural state leading to
a foot roll. As clarified in [25], a swift action would then be
required to restore the balance. Note that, at such a critical
state, it would be impossible to accommodate the impact
via CoM motion without taking a step. Another possibility
is to employ the rate of change of the angular momentum,
by rotating the trunk and the arms. This possibility will be
explored below.
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M
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M ,
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VM XM ,
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qM˙̇ AC qM˙̇ +AC
˙ qM˙

qM˙

Body-wrench
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V ref
M
˙ F refc( )

τ

∆ω
ref˙ θ

ref
u˙̇
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C
˙

,

,

θ̇

θ̇θ

FF + FB
controller

RAA controller
G

θ̇̇

+

+
ref

ref

ref

RB Bω

Fig. 1. Block diagram of the RAA controller embedded into a torque controller. The FF + FB controller block (FF and FB stand for “feedforward” and
“feedback,” respectively) uses (11), (12). The Inverse kinematics block calculates the control joint acceleration in accordance with (14). The Body-wrench
distribution block uses (19). The JSID (joint-space inverse dynamics) block is based on (20).

In the companion paper [1] it is shown that the balance
control approach based on the relative angular velocity
(RAV) is useful to stabilize the contacts after their destabi-
lization via a very fast proactive trunk bend. The movements
of the arms, though not under direct control, have been shown
to play thereby an important role. The method can be adopted
in a straightforward manner to generate and control the
reflexive motion of a humanoid robot subjected to an impact.
To ensure that impacts can be dealt with appropriately via the
angular momentum damping, the second-order formulation
of the method developed in this work will be employed.

As already noted, the RAA joint acceleration given in
(14) comprises three independent control inputs: the (inertial)
CoM acceleration, v̇refCI

, the angular acceleration of the base
link, ω̇refB and the system (centroidal) angular acceleration
input, ω̇refC . Since the focus is on impact accommodation
via rotational motion, in the following simulations the CoM
motion task will be specified as a regulation toward the
initial state, with damping. Note that the initial posture will
be intentionally set to be close to a critical state, i.e. the
ground projection of the CoM will be in the vicinity of the
toe boundary and the impact will be applied on the back.
With this scenario, a foot roll can be expected. This means
that the conservation of the system angular momentum, as
in (16), is not an option; it would be impossible to reverse
the rolling in the feet with this constraint. As shown in
the companion paper [1], to reverse the foot roll and to
stabilize the robot, the coupling angular momentum should
be conserved in accordance with (17). Given the reference
trunk rotation ω̇refB , the system angular acceleration can be
obtained from (17) as

ω̇refC = ω̇refB −DωJωθ̇. (21)

VII. EXPERIMENTS

The capability of the RNS-based postural stabilization
will be demonstrated with the following two simulations3.
A small-size humanoid robot HOAP-2 of mass 7 kg [27]
was placed on a flat ground in a symmetric posture, the
feet being aligned. The initial posture was stabilized with
the asymptotic CRB trajectory tracking control laws in (11).

3The Choreonoid dynamic simulator [26] is used.

The CoM motion was regulated at the initial position. To
minimize the deviation of the CoM during the impact, the
respective PD feedback gains were set at relatively high
values (KpC = 300, KvC = 50) t The damping gain in (21),
that is used to enforce the RNS-based motion generation,
was set at Dω = 100.

A. Accommodation of an impact when in a double stance

In the first simulation, the performance of the controller
at a critical state (foot roll) was examined. The robot was
leaning forward s.t. the ground projection of the CoM was
in the vicinity of the BoS boundary (the toe area). The
critical state was invoked by an impact applied horizontally
within the sagittal plane from behind. The application point
was around the neck, the exact coordinates (in the base-
link frame) were (0, 0, 145) [mm]. The impulse of the
disturbance was of magnitude 5.5 N applied for 50 ms.
Since the disturbance direction had no lateral component, it
could be expected that the impulse would be accommodated
with a forward bend. The angular acceleration ω̇refB was
designed as a PD feedback control law (no feedforward
component) to mimic a virtual spring-damper that would
ensure the compliant behavior at impact and the fast recovery
after the impact. It would be sufficient to regulate the base-
link angular deviation toward the initial posture during all
three phases, the pre-impact, the (reflex) impact and the post-
impact one.

To accommodate the impact during the reflex phase and
to stabilize the posture in the post-impact phase, a gain
scheduling approach was employed (see e.g. [28]). The set
of the PD gains for the base rotation is given in Table I.
Initially, high gains were used to ensure the desired pre-
impact base orientation. After the impact onset, these gains
had to be lowered as fast as possible to ensure the compliance
of the trunk. In our case, the gains were lowered with a
delay of 30 ms (the Impact I phase). The delay means that
the robot did not expect the impact. The gains were held at
low values during the remaining 20 ms of the impact (the
Impact II phase). After the impact, the gains were increased
to their initial values (the Post-impact I phase) to ensure
swift recovery of the initial posture during the final phase
(Post-impact II).
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TABLE I
GAIN SCHEDULING FOR THE VIRTUAL SPRING-DAMPER CONSTANTS OF THE BASE-LINK ROTATION (DOUBLE STANCE)

Phase Pre-impact Impact 1 Impact 2 Post-impact 1 Post-impact 2
Time [s] 0 ∼ 1.0 1.0 ∼ 1.03 1.03 ∼ 1.05 1.05 ∼ 1.25 1.25 ∼

KoB (P-gain) 300 300 ∼ 0.01 0.01 ∼ 30 30
KωB (D-gain) 50 50 ∼ 0.001 0.001 ∼ 5 5
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Fig. 2. Results for the reflexive impulse accommodation when in a double stance. The vertical dashed lines signify the time instants in Table I. The area
colored in light-blue is the BoS.

1.00 s 1.10 s 1.13 s 1.23 s 1.26 s 1.33 s 1.70 s 2.00 s
Fig. 3. Snapshots from the accommodation of an impact applied when the robot is in a double stance. The rolling feet are clearly seen in the snapshot
taken at 1.23 s.

The results of the simulation are shown in an animated
form in Part 1 of the accompanying video and in a graphic
form in Fig. 2. Snapshots from the animation are shown in
Fig. 3. The graphs are for the CoM position and velocity,
the base-link orientation and angular velocity, the CRB, the
coupling and the system angular momentum (abbreviated
as CRB-AM, CAM and SAM, respectively), the net CoP
graph in the sagittal plane and finally, for the orientations
and angular velocities of the feet.

From the graphs it is seen that the impact was successfully
accommodated, mainly with a base angular deviation in
the pitch direction, as expected. The displacement of the
CoM was insignificant. During the reflex phase, the net CoP
arrived at the BoS boundary. From the foot angular velocity
graphs it is seen that the feet began to roll. Nevertheless,

the RNS-based angular momentum damping injected via the
motion in the arms was able to recover the plane contacts
at the feet and the stability of the posture. Note that no pro-
vision was made in the controller for the contact transitions
at the feet. This clearly demonstrates the robustness of the
controller w.r.t. contact model discrepancies.

B. Accommodation of a high-energy impact when in a single
stance

The main idea behind accommodating a high-energy im-
pact without stepping is to make use of the RNS based
whole-body motion generation and control approach when
the robot is in a single stance. The generated motion in the
free leg then contributes, together with that in the torso and
the upper-limb motion, to the dissipation of the energy of
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the impact. In this way, a relatively large impact can be
accommodated.

The initial posture was a single stance one, the left foot
being lifted off the floor, the ground projection of the CoM
position was well within the BoS, at (−25.0,−25.0) mm in
the local frame of the right foot. A horizontal impact force of
fext = (25, 5) N was applied for 100 ms at the same point
as in the previous simulation. The timing of the impact and
the gain scheduling setting are shown in Table II.

The results from the simulation are shown in an animated
form in Part 2 of the accompanying video and in graphic
form in Fig. 4. Snapshots from the animation are shown
in Fig. 5. From the simulation data it is apparent that the
high-energy impact has been accommodated successfully.
The impact induced a rotational disturbance in the support
foot, but only instantaneously. The stable state was recovered
swiftly with the RAA control law. The energy of the impact
was dissipated in the post-impact phases, s.t. the robot came
to rest without disturbing the stance foot state significantly.

From the above example it becomes apparent that with
the RAA/RNS balance control approach, it is possible to
accommodate relatively large impacts without taking a step.

VIII. CONCLUSIONS

The main contribution in this work is the derivation
of a second-order formulation of the RAM/V controller
proposed in [1] and its application for torque-based whole-
body control. With the second-order formulation it becomes
possible to handle impact-type disturbances, including high-
energy ones. The RAA balance controller does not rely
on an iterative solver and thus, is quite efficient from a
computational point of view.

We used a gain scheduling approach to variate the base-
link (trunk) rotation gains. This is a heuristic approach, but
there is only one simple and intuitive rule: lower the gains
immediately after the impact and restore them shortly after
the impact. In a future work we plan to clarify the boundary
values for the gains and the timing for the scheduling in
relation to the energy of the impact and the number of
limbs used to generate the rate of change of the spatial
momentum that is required for the damping. We also plan to
explore the possibility of angular momentum damping under
centroidal angular momentum conservation, both in reactive
and proactive balance control tasks.
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TABLE II
GAIN SCHEDULING FOR ACCOMMODATING A HIGH-ENERGY IMPACT WITHOUT STEPPING (SINGLE STANCE).

Phase Pre-impact Impact 1 Impact 2 Post-impact 1 Post-impact 2
Time [s] 0 ∼ 0.5 0.5 ∼ 0.53 0.53 ∼ 0.55 0.55 ∼ 0.6 0.6 ∼ 1.1 1.1 ∼ 3.0 3.0 ∼

KoB (P-gain) 300 300 ∼ 0.01 0.01 0.01 ∼ 300 300
KωB (D-gain) 50 50 ∼ 0.001 0.001 0.001 ∼ 5 5 ∼ 50 50
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Fig. 4. Accommodation of a high-energy impact on the back without stepping. The CRB, the coupling and the system angular momentum are abbreviated
as CRB-AM, CAM and SAM, respectively. The areas colored in light blue denote the BoS.

0.50 s 0.76 s 0.86 s 1.00 s 1.36 s 1.66 s 1.83 s 2.83 s
Fig. 5. Snapshots from the accommodation of a high-energy impact applied when the robot is in a single stance.
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