
Evaluating Robot Manipulability in Constrained Environments by
Velocity Polytope Reduction*

Philip Long and Taskin Padir 1

Abstract— Robot performance measures are essential tools
for quantifying the ability to execute manipulation tasks. Typi-
cally, these measures focus on the system’s geometric structure
and how it impacts the transformation from joint to Cartesian
space. In this paper, we propose a new method to evaluate the
robot’s performance that considers both the system’s geometric
structure and the presence of obstacles close to or in contact
with the robot. This method reduces the manipulator’s joint
velocity limits by deforming the manipulability polytope to
account for obstacles. These constraints are then propagated
throughout the chain to get a more representative measure of
the end effector’s velocity capabilities. The proposed method
leads to improved understanding of the robot’s capacities in a
constrained environment.

I. INTRODUCTION

As the worldwide energy demand is expected to increase
by 50% within the next three decades, nuclear energy will
play a critical role in meeting clean energy targets worldwide.
However many nuclear facilities are aging and in coming
decades hundreds must be decommissioned, a costly and haz-
ardous task. For instance, since 1989, the U.S. Department
of Energy has spent over $250 billion of public funds on
cleanup. It is now clear that robotics will play a key role in
accelerating these cleanup timelines and reducing the costs,
by addressing operational needs and challenges in nuclear
facilities. Recently, humanoid robots have been proposed to
decommission nuclear gloveboxes and hot cells [1], a chal-
lenging task due to the environmental constraints. Thanks to
its high degree of freedom, a humanoid robot can satisfy the
task constraints in multiple configurations. These solutions
should not only respect constraints but also maximize robot
capability for future operations [2]. Our long term objective
is to allow posture optimization, constrained motion planning
and supervisory control within nuclear gloveboxes. With this
in mind this paper focuses on developing a performance
index that evaluates the manipulability of a humanoid’s arms
operating in such environments.

Robot performance indices have been used for synthesis,
manipulator placement and task planning applications. These
measures can be classified as local, for instance manipu-
lability [3] or global such as workspace analysis [4]. The
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former may be used to select a configuration based on
a manipulator’s inherent capability. The latter can analyze
the performance throughout a workspace and thus compare
manipulator suitability. A good local index does not imply a
good global performance or vice versa [5]. If the workspace
is well known, it can be discretized and reachability can be
verified for each voxel [4]. However, we focus on a local
index that considers both the robot’s capabilities and the
constraints imposed by the immediate environment.

Robotic research has long focused on extending local
measures to include different constraints. For instance, much
work has centered on altering the manipulability ellip-
soid [3]. In [6] the author proposes to modify the manip-
ulability index using a penalty function based on proximity
to positional joint limits. Joint velocity limits are consid-
ered in [7] by scaling the Jacobian matrix. The application
of contact constraints to the dynamic manipulability of a
humanoid’s center of mass is developed in [8], [9]. This
measure captures the frictional effect, and in [9] a scaling
matrix is used to enforce either joint torque or acceleration
limits. The work closest to ours is that presented in [4],
[10], in which an extended manipulability measure for per-
formance evaluation and grasp selection that considers joint
limits and obstacle is proposed. To embed these constraints,
the Jacobian is modified by a scaling matrix. Additionally,
by workspace discretization, the authors can generate a
manipulability map and thus a global index. To achieve this
a set of scaled augmented Jacobian matrices is computed
that considers workspace movements in all possible Cartesian
directions.

A more natural way of representing velocity limits in
task directions is provided by manipulability polytopes. First
proposed in [11] manipulability polytopes give an exact rep-
resentation of velocity bounds rather than the approximation
provided by ellipsoids [12], [13]. Indeed, polytopes have
been shown to be less susceptible to error in redundant
cases [14], [15]. Furthermore, task constraints can be easily
added to existing polytopes, for instance mobile robot top-
pling constraints in [16] or friction cones [17]. Thus they
may be more suitable to whole body optimization based
motion planners [18] than classical manipulability methods.
In spite of these advantages, polytopes are less frequently
used than their ellipsoid counterparts due to the additional
computational cost [10].

In this paper we propose a novel method to measure
humanoid performance based on the modification of velocity
polytopes. Our objective is to develop an index for robot
motion planning and workspace analysis rather than a mea-
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sure purely based on the kinematic structure. In contrast to
previous work, both task space and joint space constraints
on each link are taken into account. In constrained envi-
ronments, task space restrictions imposed by obstacles limit
the motion of a link in the serial chain. These constraints
also modify the end effector capacity to generate velocity
and force even if the end effector itself is located in free
space. In our method, the constraints on each link alter the
joint velocity polytope, whose effects are in turn transformed
to the point of interest. The paper is organized as follows.
In Section II, the manipulability is discussed. In Section III,
our method is outlined for the general case and an illustrative
case study is given. Sections IV describes the experimental
validation of this method. Finally, in Section V conclusions
are drawn and future work discussed.

II. MANIPULABILITY

A. Manipulability Ellipsoid

We consider a n degree-of-freedom manipulator operating
in 6 dimensional space. The twist at the end effector frame,
Fn, is denoted by νn, and is obtained from the kinematic
model as

νn =

[
v
ω

]
= Jnq̇, (1)

where Jn is the 6×n Jacobian matrix defined at Fn. v and
ω denote the translational and angular velocity respectively.
q̇ is the joint velocity vector, q̇ = [q̇1, q̇2 . . . q̇n]

T . The
manipulability ellipsoid introduced in [3], denoted here as
E , measures the robot’s capacity to transmit velocities and
forces from the joint space to the task space. E is obtained
by considering the joint velocities in the unit sphere i.e.,

q̇T q̇ ≤ 1. (2)

By substituting (1) into (2), the task space ellipsoid is
described by

E = {νTn
(
JJT

)−1
νn ≤ 1}. (3)

The principal axes are defined by the eigenvectors of JJT

and their magnitude is defined by the singular values of J.
Typically the volume of E , given as w =

√
JJT is used as

a performance indicator.

B. Manipulability Polytope

A polytope, P can be represented as a convex hull of its
vertex set (V-representation),

P = {x : x =

n∑
i=1

αiyi

∣∣∣∣∣αi ≥ 0,

n∑
i=1

αi = 1}, (4)

where yi is the ith element of the vertex set and x denotes
any point contained in P . Alternatively, P can be defined
as the intersection of a finite number of half-spaces (H-
representation) as

P = Ax ≤ b, (5)

where A contains the normals to the half-spaces and b
contains the shifted distance from the origin along the

normal. Conversion between representations is possible for
instance using the double description method [19].

For a robot of n joints, the joint space polytope, denoted
by Q, is a n−dimensional polytope that encapsulates all
possible joint velocities. In H-representation Q is given by[

In
−In

]
q̇ ≤

[
q̇max

−q̇min

]
, (6)

where In denotes the n × n identity matrix and q̇max

and q̇min denote the robot’s maximum and minimum joint
velocities respectively. The V-representation of Q contains
2n vertices in n-dimensional space, whose matrix form is
given as

Qv =


q̇v
1

q̇v
2
...

q̇v
2n

 =


q̇min
1 q̇min

2 . . . q̇min
n

q̇min
1 q̇min

2 . . . q̇max
n

...
...

...
q̇max
1 q̇max

2 . . . q̇max
n

 . (7)

A linear transformation of a polytope always results in an-
other polytope. It follows that a linear transformation applied
to q̇j is a convex combination of the same linear transforma-
tion applied to the vertices. Thus by applying (1) to the vertex
set a manipulability polytope, denoted P , is formed for the
task space velocities. Partitioning these velocities, to allow
for geometrical interpretation with unit homogeneity, [7], the
translational velocity vertex set, denoted Vv , contains 2n

vertices in 3-dimensional space, whose matrix form is given
as

Vv =
[
v1 v2 . . . v2i

]T
, where vk = Jk q̇v

k.
(8)

A performance metric, denoted as wp, is obtained by cal-
culating the enclosed volume. The equivalent ellipsoid’s
volume is always smaller i.e., w < wp. Indeed, the ellipsoid
major axis may not align with the actual direction of the
maximal velocity transmission ratio [7].

III. DEFINITION OF PERFORMANCE INDEX IN
CONSTRAINED ENVIRONMENTS

In this section, a new method which deforms the manip-
ulability polytope by taking into account obstacles in the
robot’s workspace is proposed. We posit that a performance
index should be guided by two principles

1) The manipulator’s maximum velocity in the obstacle’s
direction should be reduced.

2) The closer the obstacle is to the robot the more
pronounced the reduction should be.

To reduce the manipulator’s capacities, we propose a poten-
tial field method. The kineostatic dangerfield [20] can be
used to classify the danger associated with a point in the
workspace, with respect to the robot’s state. In contrast, in
our approach, a maximum danger for such a point is enforced
by reducing the attainable velocity in that direction. In the
following, a variable with the superscript ∗ denotes that the
variable is associated with the reduced polytopes.
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(a) C1 : q = [0.8 − 0.9]T

(b) C2 : q = [0.8 − 1.6]T .

Fig. 1: 2-DOF robot in two configurations, ro1 = [0.1 0.28] ro2 = [0.8 0.45]. Column 2 shows the manipulability ellipsoid
(dark gray) and polytope (light gray). Col. 3 the reduced polytope (dark gray) inscribed in original polytope (light gray) due
to one obstacle and Col. 4 the reduced polytope (dark gray) inscribed in original polytope (light gray) due to two obstacles.

A. Polytope Construction
The kineostatic danger field discretizes the robot’s links

into l control points (CPs) and the workspace into c cells. The
danger field for the jth cell in the environment is calculated
as [20]

φj = max
i=1...l

(
1

‖ri − rj‖
+
‖vi‖(cos(∠(ri − rj ,vi))

‖ri − rj‖2

)
,

(9)

where rj is the position vector of cell j, ri the position vector
of CP i on the robot and vi is the robot’s velocity obtained
at i using the kinematic model. cos(∠(ri − rj ,vi)) denotes
the cosine of the angle between vi and ri − rj . It should
be noted that all CPs on the robot’s body can contribute
to the danger value at cell j rather than simply the closest
point to the object. In order to create a system of inequality
constraints (9) is re-defined as

∀i, i ∈ CP, φj ≤
1

‖rij‖
+
‖vi‖(cos(∠(rij ,vi))

‖rij‖2
, (10)

where rij = ri−rj . Substituting the well-known dot product
relation

cos(∠(rij ,vi)) =
vT
i rij

‖vi‖‖rij‖
, (11)

(10) becomes

φj ≤
1

‖rij‖
+

vT
i rij

‖rij‖3
, (12)

Finally, by introducing r̂ij the normalized unit vector of rij
after rearrangement (12) becomes

vT
i · r̂ij ≤ φ‖rij‖2 − ‖rij‖, (13)

In this paper, rather than creating a danger field for safety
purposes, the objective is to study the reduction in perfor-
mance. Therefore the robot’s velocity is reduced until the
danger field value at the obstacle location, denoted as o
is below a threshold i.e. a defined desired danger value.
Equation (13) is re-written as

vT
i · r̂io ≤ φd‖rio‖2 − ‖rio‖, (14)

ro is the obstacle’s position vector with respect to the
robot’s fixed frame, Fw and φd denotes desired danger value.
By introducing, (1) the following expression is obtained in
configuration space

r̂Tio Jiq̇ ≤ φd‖rio‖2 − ‖rio‖. (15)

Ji is the 3×n Jacobian matrix that relates the joint velocities
to the translational velocities at point i. If a joint does not
contribute to the velocity at CP i the corresponding column
of Ji contains zeros. Hence (15) restricts the maximum
velocity for CP i in the direction of the obstacle. Taking into
account the l CPs on the robot’s body leads to the following
set of inequalities

r̂T1o J1

r̂T2o J2

...
r̂Tlo Jl

 q̇ ≤


φd‖r1o‖2 − ‖r1o‖
φd‖r2o‖2 − ‖r2o‖

...
φd‖rlo‖2 − ‖rlo‖

 , (16)

which for convenience for the kth obtstacle is re-written as

Jokq̇ ≤ bok. (17)

Equation (17) denotes the velocity constraints on all points
on the robot due to the kth obstacle. For m obstacles or

499



0 0.25 0.5 0.75 1 1.25 1.5

x [m]

0

0.25

0.5

0.75

1

1.25

1.5

y
 [

m
]

q

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

x [m]

0

0.25

0.5

0.75

1

1.25

1.5

y
 [
m

]

w
p

0 0.25 0.5 0.75 1 1.25 1.5

x [m]

0

0.25

0.5

0.75

1

1.25

1.5

y
 [

m
]

w
*

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 2: From left to right: Workspace analysis using joint polytope volume ratio, manipulability polytope volume,
reduced manipulability polytope volume. Three configurations are shown q = [1.4 − 1.36]

T , q = [0.99 − 1.23]
T and

q = [0.65 − 1.21]
T .

(a) C11 and C21 (b) C12 (c) C22

Fig. 3: Joint Polytopes for planar 2-DOF

danger zones in the robot’s workspace and including the
constraints defined by (6), this becomes

Jo1

Jo2

...
Jom

In
−In


q̇ ≤



bo1

bo2

...
bom

q̇max

−q̇min


. (18)

By comparison with (5), it can be seen that (18) is the H-
representation of joint space polytope, which is denoted as
Q∗. By converting the H-representation to V-representation
and transforming the resulting vertices to the task space
using (8), a reduced polytope, denoted as P∗ that charac-
terizes the constrained task space performance while also
considering joint velocity limits is obtained. It should be
noted that this process may result in a dependency between
joint velocities. While this gives a true representation of
velocity limits, it is often desirable to independently control
each joint. If this is the case velocity limits may be obtained
by selecting the most restrictive limits in the polytope, i.e.
by the largest hyperrectangle that can be inscribed in Q∗.

B. Performance Index

By calculating the volume of the reduced polytope P∗

a performance index, denoted w∗
p, for the robot is obtained.

However, as this index is configuration dependent, in order to
solely analyze the reduction due to environmental constraints
the joint polytope must be examined. The n-dimensional joint
polytope is composed of a set of n dimensional simplexes.
A simplex s is defined by n joint velocity vertices. The

volume of the joint polytope is given as sum of volumes of
all simplexes, i.e. for a polytope containing k such simplexes

wq =

k∑
s=1

∣∣∣∣∣ 1n!det
(
q̇v
s1, q̇v

s2, . . . q̇v
sn

) ∣∣∣∣∣, (19)

where q̇v
si is the ith vertex of the sth simplex. A performance

index is defined as

ηq =
w∗

q

wq
, (20)

where w∗
q is the reduced joint polytope’s volume. 0 <

ηq < 1 is dimensionless and defines the reduction in robot
performance due to obstacles and thus is used to complement
a chosen metric. Equation (20) is invalid if a joint is immobi-
lized due to constraints since the polytopes exist in different
dimensions. Moreover, if the robot has heterogeneous joint
types, (20) may no longer be dimensionless. Instead the
effect on each joint must be examined, one possible option
is given as

ηr =
1

n

n∑
i=1

∣∣∣∣∣ q̇max∗
i − q̇min∗

i

q̇max
i − q̇min

i

∣∣∣∣∣, (21)

which represents the mean performance loss of each joint
and should also be used for independent joint control cases.

C. Illustrative 2-DOF planar robot case

The concept is demonstrated for two configurations of
a planar manipulator by adding objects and studying the
resulting polytopes. The joint velocity limits are given as
q̇min = [−1.0 − 1.0] , q̇max = [1.0 1.0], the link lengths
are given as l1 = 0.8, l2 = 0.55. In the following, we
refer to Cij , where i and j represent the robot and object
configuration respectively. The top row of Fig.1 shows P
and E at the terminal point, followed by P∗ in the presence
of O1 and (far right) O1 and O2. Fig. 3 shows Q∗ inscribed
in Q (a unit square). The addition of O2 has different
effects on both configurations due to its relative location. In
Fig.1b, P∗ shows maximum velocity in the negative x and
y directions as expected given the object locations. Fig 2,
shows a workspace analysis. The workspace is discretized
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Fig. 4: Experimental setup showing CP (blue) and world
frame, Fw. The rays (red) denote obstacles that are close
enough to be considered in half-space computations.

into mm2 cells. At each cell the inverse geometric model is
used to obtain the robot’s elbow up configuration (q1 ≥ 0,
q2 ≤ 0 ). From this configuration the performance indices,
η, wp and w∗

p are calculated. η gives a pure representation of
reduced capacities due to obstacles, whereas w∗

p also includes
the manipulator’s capabilities. Finally, it is interesting to note
the blue curve which effectively marks a boundary between
the workspace due to the obstacle presence i.e a region the
manipulator cannot cross in this configuration.

IV. EXPERIMENTS

A. Experimental Setup

The experiment consists of inserting the right arm of
NASA’s Valkyrie robot [21] into a glovebox reflecting an
example decommissioning action. The setup is shown in
Fig.4, on the left the planning environment with a glovebox
model and on the real robot with a glovebox mockup.
The glovebox model is treated as an obstacle that reduces
the robot’s velocity capacities. The blue arrows in Fig.4
show the robot’s CPs. In order to obtain rio, a ray-casting
technique is used. A ray R is defined as R = ri +

t
[
cos(θ) sin(φ) sin(θ) sin(φ) cos(φ)

]T
, where 0 ≤

θ ≤ 2π and 0 ≤ φ ≤ π. The rays that intersect the glovebox
are shown in red in Fig.4 (for clarity only rays along the
x-axis are shown). The Jacobian matrix is evaluated at the
CP and then projected along the ray to obtain (15). An
optimization based motion planner [18] is used to generate
a collision free trajectory for the insertion task. During
the trajectory execution the model is updated with current
configuration values in order to evaluate the manipulators’
performance indices.

B. Results

Fig. 5 and Fig. 6 respectively show η defined from (20)
and a comparison of wp and w∗

p. Fig. 8 shows the experiment,
divided into four parts, initial configuration, pre-insertion
task, insertion and post insertion task. The second row of
Fig. 8 shows the manipulability polytope evaluated for the
four cases at the right hand. Initially, a slight reduction is
seen along the x-axis due to the proximity of the glovebox
as shown in Fig. 4. As the hand passes through the port a
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Fig. 5: ηq evaluated for the four configurations. As ηq is
defined in the configuration space, it represents the obstacles’
effect without considering the arm kinematic transformation.
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p for the four configurations.
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Fig. 7: Computation time versus half-spaces in Q∗.

decrease in velocity capacities is observed. This is also seen
in Fig. 5 where η < 0.1. Fig. 6 shows how wp diminishes
slightly as the arm straightens out whereas the decrease of
w∗

p is more pronounced due to the effects of the surrounding
obstacle. As the hand emerges on the other side, a gradual
increase is noted in the velocity capacity as the translational
velocity generated by the wrist joints is no longer constrained
by the glovebox port. A corresponding increase in w∗

p and
η is seen in part 4 of Fig. 5 and Fig. 6. Finally, Fig. 7
shows the algorithm’s computation time for one iteration
(including constraint construction, Cartesian transformation
and volume computation) < 70ms for ≈ 200 half-spaces
(186 detected contacts & joint velocity limits) with an Intel
Core i7-7700HQ CPU 2.80GHz × 8.

V. CONCLUSION

In this paper, we proposed a new method for quantifying a
robot’s performance in constrained environments, by limiting

501



Fig. 8: Top: Valkyrie inserting arm into a glovebox, Bottom: Manipulability Polytope shown in red, reduced polytope shown
in blue evaluated at the right hand for the insertion task’s four stages.

joint velocities that generate motion towards obstacles. The
method is illustrated with a planar case study and it is shown
how it can be used to analyze the robot’s workspace in
cluttered surroundings. Experiments have been performed
that demonstrate the method with NASA’s Valkyrie robot
inserting the right arm into a glovebox. In ongoing work we
aim to exploit this index for motion planning purposes for
the Valkyrie humanoid robot, for instance as a cost within
a contact implicit motion planner framework. Additionally,
we aim to consider the humanoid’s whole body motion rather
than just the right arm.
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