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Abstract— This paper presents a generalized method to
evaluate risks associated with humanoid robots executing ma-
nipulation tasks. Risks are defined as the product of probability,
the likelihood of an event occurring, and severity, the resulting
magnitude of harm should it occur. Rather than try to reduce
the probability of failure events to zero, the objective of this
work is to allow an experienced operator/supervisor to define if
some failures are worse than others. In doing so, this allows the
operator to judge whether high risk motions are necessary for
the task at hand. Utilizing NASA’s humanoid robot Valkyrie,
our framework is demonstrated in both simulation and on the
physical robot, with a pick and place task. We show that our
method is capable of predicting failures for given motions based
on their calculated risk.

I. INTRODUCTION

Nuclear facilities worldwide are approaching the end of
their lifespan and must be decontaminated and decommis-
sioned in a safe and secure way [1]. These tasks are dull,
dangerous and dirty and therefore are ideal candidates for
robots. However, due to their hazardous nature, it is unlikely
that such tasks can or should be fully automated; in fact, it
is desirable to exploit the operator’s experience. Thus, su-
pervised autonomy is envisaged where the operator selects a
task level objective and the robot obtains a complete planning
solution. With this in mind, it is extremely important that the
risks associated with different solutions are calculated before
execution and that these risks consider sensors, actuator and
robot state uncertainties along with severity associated with
failure.

Decommissioning tasks involve a wide range of locomo-
tion and manipulation actions meaning that no one robotic
solution is optimal. Recently humanoid robots have been
proposed as a general purpose solution [2]. However, even
with recent efforts [3], [4], deploying humanoid robots in
unstructured environments with reliable autonomy remains
a significant challenge. The core problem is the inability to
fully model and react to unstructured and dynamic environ-
ments. In spite of sensor improvement, certain errors are
unavoidable and frequently can only be mitigated by repeated
calibration. Within an industrial process slight degradations
in performance can be measured and thus corrected before
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failures occur. In safety critical applications, for instance,
handling high-consequence materials, it is imperative that
the system achieves its goal or at the very least fails in a
safe and/or operational manner.

Risk associated with an event is defined from two basic
concepts: the likelihood of the event occurring (probability)
and the resulting magnitude of harm (severity), also known as
the expected loss. Humans intuitively integrate risk into the
decision making process [5], [6], [7], even when planning
motor behaviors [8]. Decisions are based on confidence
in expected results, either successes or failures. While the
probability of an event can be calculated within defined
bounds, the expected loss is a subjective measure. One
definition is the inverse of payoff [9] in the case of success,
but this metric can lead to incorrect and counter-intuitive
evaluations [8]. Risk propensity [10] can vary with time,
problem definition and prior experience [5] thus evaluation of
risk cannot be separated from the decision making agent [11].

Risk is analogous to probability if the severity is constant,
i.e. all failures are equally bad. In robotics this paradigm is
often applied to autonomous vehicles, for example [12], [13]
where risk is directly defined as the probability of collision.
In this case Markov Decision Processes [14], [15] can be
efficiently used to solve the selection process. However,
most human drivers recognize a head-on collision is more
dangerous than two vehicles scraping against each other,
thus making the concept of severity an integral part of risk
planning. Indeed, recent work [16], [17] has recognized the
limitations of considering risk and probability in robotics to
be equivalent. To embed the idea of severity into risk man-
agement, a known safety criteria can be used, for instance in-
ternational norms (i.e. ISO 13482:2014). In [18], the authors
propose a robot control scheme that evaluates the severity of
a potential collision to change its controller. Likewise in [19],
[20], the objective is not to reduce the probability of failure
but rather ensure that the magnitude of harm incurred during
this failure is reduced. This is applicable where severity is
quantifiable, for example robot/human collision [21], [22].
In other cases, expert or empirical knowledge is used, for
instance in [23] where a global measure of severity is
empirically defined and fused with probability of failure to
allow for risk minimization.

In this paper, we extend upon our work first presented
in [24] by two contributions (1) a generalized method to
evaluate risk for a failure event and (2) the introduction of
the concept of severity based on robot state and operator
experience. In our target scenario, displacing nuclear material
in an unknown dynamic environment, it is unreasonable to
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believe the robot can/should compute severity indexes for
everything that can go wrong. Instead, the likelihood of this
occurrence should be communicated to the teleoperator who
then can make an informed decision, based on their past
experiences dealing with hazardous material. The first step,
which we do not treat in this paper, is to obtain the possible
failure events and their associated severity, either using safety
guidelines or empirical evidence. The selected severity for
the failure events is then combined with the probability to
obtain the risk for a sequence of tasks. The paper is organized
as follows. Section II defines the problem and a new risk
function for a generic action is introduced. The experimental
setup is explained in Section III followed by the results in
simulation and in experimentation in Section IV. Finally in
Section V conclusions are drawn and future work discussed.

II. METHODOLOGY

A. Problem Statement

In the following, the notation defined in [24] is recalled. A
high level task, denoted T can be achieved by composing a
sequence of robot behaviors. This is known as compositional
robot autonomy. The ith composition, denoted Ai, comprises
a set of actions, i.e. Ai = {M1,M2 . . .Mj}. An action,
Mj , drawn from a feasible action set, is typically represented
by a motion trajectory, Traj(Mj) = q(t), t ∈ [t0, tf ],
where q(t) is the vector of joint position variables that
define the robot configuration. Each composition that would
successfully complete the task is contained in the set of
feasible compositions, Ai ∈ A. Thus in the absence of
errors and in a known static environment, the decision maker
selects between compositions using a criterion, such as
time or energy minimization, or intuition. In reality, sensor,
actuation, and controller errors are unavoidable. Therefore,
our objective in this work, is to obtain a risk measure
that permits the operator to make an informed composition
selection, based on probabilistic bounds and severity costs.
In the following section, our proposed method for evaluating
risks is outlined. In summary,
• Actions are comprised of motions and are defined with

respect to robot capability. Examples for a humanoid
robot can be: PICKLEFT: Grasp an object with the left
hand, PLACELEFT: Move left hand to target location
and release object, SCANSCENE: Look around for
target object, SIDESTEPLEFT: - Take one side-step left,
STEPMULTIPLE - Walk to a desired base pose with
multiple steps, etc.

• A risk assessment listing failure events is carried out
for members of the feasible action set. An example
event for PLACELEFT: is COLLISIONLEFTARMWALL:
the left arm colliding with a wall. To calculate the risk
associated with an event two function must be defined.
Firstly, a function that returns the event’s probability
during PLACELEFT based on robot state and the per-
ceived environment. Secondly, a function that evaluates
the cost, based on robot state and operator experience.
For instance, an operator may consider a collision with

Fig. 1: Compositions for the humanoid pick and place task,
with an example composition highlighted.

a wall more serious than a collision with a movable
object.

• The compositions are formed by stitching feasible
actions together. For example LOCATEOBJECT →
PICKLEFT → PLACELEFT or alternatively
STEPLEFT → PICKLEFT → HANDOVER →
PLACERIGHT can be used to execute a pick and
place task. The risk for the action composition is
obtained by the sum of the action’s risks. The high
level decision maker can select between compositions
using the risk metric. Furthermore, the risk can be
monitored on-line in case of large variations due to
controller errors and/or environmental changes.

B. Action Risk Assessment

The risk assessment tool is used to define events, denoted
as (Eij)ki=1, that may lead to failure during the execution of
this action, where i denotes a failure event, j denotes the
action, and k is the total number of failure events. Hence
Eij denotes one of k possible failure events associated with
action j.

In order to evaluate the risk Rij , associated with event
Eij , functions are defined that calculate the probability of
Eij occurring and the magnitude of harm (also known as cost
and called throughout this paper as severity) should it occur.
The probability and severity, denoted Pij(t) and Sij(t), are
evaluated for the duration of the action. A time varying risk
metric, for event Eij is given as

Rij(t) = (Pij(t)× Sij(t)) . (1)

Hence, the unit of risk is defined by the measure of severity,
the most logical being monetary [16], i.e. the expected cost
of failure. Indeed, the risk is equal to the cost if the action
is inevitable. It should be noted that events themselves are
not necessarily elementary (atomic) and the system may be
capable of reacting in order to reduce the cost. In this case (1)
becomes

R(t)ij =
(
Pij(t)×Rr

ij(t)
)
, (2)
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where the risk associated with the recovery action is
Rr

ij(t) ≤ Sij(t) and is expressed as

Rr
ij(t) = Pr

ij × Srij + (1− Pr
ij)× Sij(t). (3)

Pr
ij is the probability the reactive action succeeds and Srij

is the reduced cost incurred thanks to the reactive behavior.
This type of recursive analysis in risk assessment is known
as event trees, [25]. In this paper, we select the maximum
risk, i.e. worse case scenario for each event. Additionally, we
treat the events as independent, hence the risk Rj associated
with action Mj can be obtained as

Rj =

k∑
i=1

(max(Rij(t)) . (4)

C. Risk Aware Planning Framework

For a desired task, T and a robot configuration q, we
assume the existence of A, which is the set of feasible
action compositions to accomplish the task. The motion
generation for each action is calculated by an optimization
based motion planner described in [3], [4], resulting in a set
of robot states that satisfy the task constraints. A cubic spline
interpolation is implemented to obtain the desired trajectory,
Traj(Mj) = q(t), t ∈ [t0, tf ]. The procedure described
in Section II-B then is used to obtain the risk for action
Traj(Mj), assuming the information used by the motion
planner is perfectly representative of the real world. The risk
for composition Ai is given as

R(Ai) =

M∑
j=1

Rj , (5)

where M denotes the total number of motions in the given
action. The composition with the minimum risk from the
set of feasible action compositions may then be chosen.
Alternatively, the risk associated with each composition can
be compared to a reward function such as total time.

III. EXPERIMENTAL SETUP

In order to demonstrate the concept, a simple pick and
place task is executed by NASA’s R5 humanoid robot,
Valkyrie. Several different compositions can complete this
task, a subset can be seen in Fig. 1. In this section, three
different failure events are introduced.

A. Collision Event

A collision event is defined as an undesired collision
between a robot’s link and the environment or another of
the links (self-collision). The motion planner ensures that
discrete robot state’s are collision free. The intermediate
volume is verified using the swept volume method [26].
Nevertheless, unforeseen collisions can occur due to errors in
the environmental model, mesh volume estimations, trajec-
tory interpolation/smoothing approximations and controller
errors due to imprecise robot state. To model the probability
of collision between a link L and an object O, the minimum
distance dlo(t) is defined for the duration of Traj(Mj).
This is defined as the minimum distance that L can move

in any direction before its mesh intersects with the mesh
representing object O. A normal distribution is used with
the probability density function (PDF)

f(x | dlo(t), σ2) =
1√
2πσ2

e
−
(x− dlo(t))2

2σ2 , (6)

Then the probability of collision, i.e. dlo(t) ≤ 0, at an
instant, is denoted t Pcj(t) and is defined by the cumulative
distribution function (CDF)

Pcj(t) =
0∫

−∞

f(x | dlo(t), σ2)dx, (7)

where σ denotes the standard deviation of the PDF. In this
work, we consider self collisions (σ = 0.025) and possible
collision between all objects and the robot’s hands (σ = 0.4).

The severity of a collision depends on the mass and the
velocity of the link in question. Therefore, severity of a
potential collision between L and an object O at any instant
during the trajectory is defined as using the link’s kinetic
energy:

Scj(t) = klo
(
ml v

T
l vl + ωl

T Ilωl

)
, (8)

where ml, Il denote the mass and inertia tensor of L and vl

and ωl denotes its translational and angular velocity. klo is a
user defined variable that is chosen based on O, with units
J−1, where J denotes a Joule.

B. Falling Event
Falling over is a critical event, which, for humanoid

robots, typically signals the end of any operation. To prevent
falling, for statically stable humanoid such as Valkyrie, it is
necessary to maintain the projection of the center of mass
within the support polygon. Motions are planned such that
this constraint is respected. However, errors may occur due
to incorrect robot inertial parameters and/or object mass
properties. In addition, the exact bounds of the support
polygon may vary with terrain, for instance on uneven or
soft terrain. The minimum distance from the projected center
of mass to an edge of the support polygon formed by the
robot’s feet, denoted dz(t), is calculated for the duration
of Traj(Mj). The probability of falling, i.e. dz(t) ≤ 0,
denoted Pzj(t) is given as

Pzj(t) =
0∫

−∞

f(x | dz(t), σ2)dx, (9)

with σ = 0.08 in general operation and σ = 0.16 when
carrying an object. The severity of a fall depends on
robot configuration, surroundings and durability of respective
link’s/components. In this paper, severity of a fall event is
defined as

Szj(t) = kz (p
com
z ) , (10)

where pcom denotes the center of mass and the subscript
z denotes its z component. The user selected gain term is
defined in this case as kz = 10.
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(a) A1: PICKLEFT → PLACELEFT (b) A2 PICKRIGHT → PLACERIGHT (c) A3 PICKLEFT → STEPRIGHT → PLACELEFT

(d) A4 STEPLEFT → PICKRIGHT → PLACERIGHT (e) A5 PICKLEFT → HANDOVER → PLACERIGHT

Fig. 2: Task compositions broken into individual actions.

C. Torque Limits Violation Event
A torque limit violation occurs when the controller set-

point exceeds torque limits. In this case, the system sends
the maximum torque yet will be unable to achieve the desired
action. Consequently, the trajectory may not be collision free
and may lead to instabilities. This may occur due to poor
estimation of the grasped object and unmodeled dynamic
disturbances. The probability of the ith joint exceeding a
torque limit, τmax

i , is given as

Pitj(t) =

0∫
−∞

f(x | ‖τmax
i − τi(t)‖, σ2)dx, (11)

where τi is the estimated joint torque at time t. We consider
the severity of a violated torque to be proportional to the
magnitude of the violation.

D. Calculation of Total Risk
For each event the risk value is obtained from (2). The

maximum risk value across the whole trajectory is taken
as the risk value for the action Traj(Mj). For exam-
ple, composition A1 that consists of actions {PICKLEFT,
PLACELEFT}, the total risk is defined by (5). In our pick
and place example, the risk is a scalar value composed of
collision risk, joint limit violation and falling risk for each
action, bounded by 0 ≤ R(Ai) ≤ Sfailure, where Sfailure
denotes the cost of a critical event defined by the user, for
instance a high velocity collision or falling event.

IV. EXPERIMENTS

The objective is to transfer an object on a table from a
pick position to a place position with an obstacle between
the two points. In order to calculate the motion trajectories,
the mesh and mass properties of the transported object are
given. For each composition, the motion planner generates a
priori safe plans. The initial configuration for a subsequent
action is assumed to be the desired final configuration of the
previous action.

A. Monte Carlo Simulations
The planner environment is shown in Fig. 2. For each

action the motion planner generates a feasible trajectory.
The risk associated for each action from the planner data is
computed and presented in Fig. 3a. The risk associated with
each composition as calculated by (5) is shown in Fig. 3b.
The highest risks are generally those associated with falling,
this is due to the high cost of failure, in spite of a low
probability. The highest predicted risks are for A3 and A5,
in the former case due to the possibility of falling while
transporting the object, in the latter case due to the possibility
of a high speed collision with the table1.

The planned motions are executed by the dynamic sim-
ulator 100 times during which Gaussian noise is added to
the object’s position (σ = 0.05[m]), object’s orientation
normal to the ground plane (σ = 0.01[rad]), the book’s mass
(σ = 1.5[kg]) and the robot’s center of mass (σ = 0.02[m]).
In addition, the planned joint trajectory is not followed
exactly by the dynamic simulator due to controller errors
and interpolations. The failure events during each execution
are recorded and presented for each composition in Fig. 4. It
shows that while A1, A2 and A4 suffer from many failures
these failures are of a very low severity, typically collisions at
low speeds or contact before grasping. In contrast, A3 suffers
from high cost failure events and thus should be avoided.

B. Experimental Validation
To experimentally validate our framework on physical

hardware, the composition with the lowest predicted risk,
A1, is compared with the composition of highest predicted
risk, A3. The experimental setup is shown in Fig. 5. Each
composition is repeated five times during which the position
of the table and obstacle is slightly altered. Moreover, for
tests 3, 4 and 5, 0.372 kg, 0.720 kg and 1.2 kg are added to
the book to perturb the system.

1The higher velocities attained during A5 are generated by the motion
planner to ensure balance and synchronized motion
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MaxRisk ZMP LeftTable LeftBook LeftBookpile LeftRobot RightTable RightBook RightBookpile RightRobot tauLeftSR tauLeftEP tauRightSR tauRightEP
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RightPlaceA4
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RightPlaceA5

LeftWithdrawA5

HandoverA5

(a) Predicted risks using (4) versus failure event associated for each action, where LeftBook
denotes a collision between the left arm and the book, tauLeft denotes a torque limit for the
left arm and SR and EP denotes the shoulder roll and elbow pitch respectively.

(b) Evaluation and comparison the
total risk i.e., (5), for each compo-
sition for task T .

Fig. 3: Predicted risks based on planner output.

Fig. 4: Histogram of recorded events over 100 trials, the x− axis shows the severity of the event and the y− axis shows the
number of occurrences. While A3 has less overall failure events, the resulting severity is much higher leading to a riskier
overall composition. In contrast, A1, has a high number of low severity failure events such as low speed collisions.

This study presents a relatively small sample size compris-
ing five experiments for A1 and A3, nevertheless there is a
clear performance disparity between the two compositions. In
all five experiments, A1 is successful in transferring the book
from one side of the table to another, in two cases without
any failure event. In the other three cases slight collisions
were observed between the obstacle and the grasped object
during the transfer and also during the placing action with
the back of the left palm. These collisions occurred at low
velocities and had no significant impact on the task. In
contrast, A3 experienced no collision errors when placing
the object, though occasionally minor collision between
the book and box occurred during the withdrawal phase.
However a critical error occurred as the robot fell during

test 4 with the addition of 0.72 kg on the grasping hand.
Additionally, the robot exceeded a torque limit towards the
end of the composition in test 2. Furthermore, although not
quantitatively evaluated the operators noted stark differences
between the compositions including increased oscillations
due to corrective controller action and a above average pelvis
height during A3.

V. CONCLUSIONS

In this paper, a risk informed task planning framework
is presented. that allows an operator to associate risks with
actions by defining generic failure events. Each event is
defined with both a probability and severity function. The
resulting risk metric is a single scalar value of monetary unit
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Fig. 5: Experimental setup for compositions A1 and A3.
Top row, A1: PICKLEFT → PLACELEFT, Bottom row A3:
STEPRIGHT → PLACELEFT

which should be associated with a real world cost of failure.
We have shown by simulation how this risk metric is a valid
indicator for predicting high severity failures. Moreover, the
experimental work, albeit limited, appears to validate these
metrics.

There are several avenues of future work. The enumeration
of failure events is a time consuming process and in this
work we have focused on three prevalent failure events,
collision, falling and torque limit avoidance. In future work
the automatic identification of a failure event’s probability
and severity will be explored. To do so, we aim to analyze the
system’s behavior when directly controlled by an experienced
operator. Finally, the possibility of reducing total cost by
allowing reactive control will be investigated.
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