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Abstract—Human-robot interaction (HRI) is moving
towards the human-robot synchronization challenge. In
robots like exoskeletons, this challenge translates to the
reliable motion segmentation problem using wearable
devices. Therefore, our paper explores the possibility of
segmenting the motion reversals of a rigid-IMU cluster
using screw-based invariants. Moreover, we evaluate the
reliability of this framework with regard to the sensor
placement, speed and type of motion. Overall, our results
show that the screw-based invariants can reliably segment
the motion reversals of a rigid-IMU cluster.

I. INTRODUCTION

For successful intervention in rehabilitation robotics,
the algorithms that drive the HRI are required to detect,
react and adapt quickly to changes in user intention
[1]. Despite this need, current practices in HRI sel-
dom incorporates the knowledge of human posture into
the decision process [2]. Consequently, reliable motion
tracking and segmentation based on wearable devices is
a fundamental problem in robot-assisted rehabilitation
[3]. Therefore, this work focusses on the problem of
segmenting the motion reversals of a rigid-IMU cluster
using screw-based invariants (see Fig 1). Here, by
motion reversals we mean that both forward and reverse
motions are exact geometric reversals as shown in Fig
4-A and 4-B.

Reliability is the measure of consistency or repeata-
bility in the data analysis. Moreover, high computational
reliability is a pre-requisite for robot-assisted reha-
bilitation to yield consistent results [4]. Furthermore,
in robot-assisted rehabilitation, it is desired that the
computational framework is generalizable and platform-
invariant [1], [4]. However, such a framework is still a
work in progress, as it presents a formidable challenge
to extract and interpret the parameters in a meaningful
manner [4].

Solutions in the state-of-the-art rehabilitation tech-
nology use motion capture or video analysis; however,
such solutions cannot be generalized to a real-time and
real-world setting [5]. Alternatively, there are inertial
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Figure 1: The figure illustrates the main research question
which is to segment motion reversals of a rigid body with a
cluster of inertial measurement units (IMUs) attached to it.
This segmentation is demonstrated by the results in Section
VI-A.

measurement units (IMUs) which can measure its own
movement by the inertial principle [6]. In comparison
to standard motion analysis systems, IMUs are advan-
tageous as they are: affordable, occlusion-free and have
increased capture volume [4], [7]. Although IMUs are a
viable alternative, their use remains largely unexplored
as a biofeedback modality in rehabilitation robotics [1],
[6]. Therefore, in the context of HRI, there is a need
for an IMU-based computational framework [6].

Importantly, recent studies have shown that there are
several confounding factors that affect the reliability of
the IMU processing [8]. These factors are namely: type
of motion, speed of execution, magnetic environment,
hardware errors, motion protocols and post-processing
[5], [8]. Additionally in IMUs, the choice of the under-
lying kinematic model for information processing will
in turn affect the reliability of the extracted parameters
[8]. Many of the existing studies have been extensively
carried out using human motion. It is well known that
human motion has high inter-trial variability. Unlike
human motions, robot motions are highly repeatable,
their speeds can be carefully controlled and a variety
of motions can be tested in a carefully controlled set-
ting. Therefore, to establish a reliable ground-truth, our
work explores the reliability of segmenting the motion
reversals of a rigid IMU cluster which is guided by a
humanoid robot.
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Our present work addresses several of the above
factors in detail. Mainly, the effect of sensor placement,
speed and type of motion on segmentation reliability
are explored in detail. In our paper, we extend the rigid-
body invariants proposed by De Schutter in [9] to IMUs.
Importantly, as this framework is coordinate-free, the
effect of sensor placement or the choice of kinematic
model on reliability can be ruled out. In fact, our earlier
work demonstrates that this invariant framework can
reliably extract and segment movement features from
motion capture data [10].

We open our paper with a brief literature review
in Section II. Then, we introduce the screw-based
invariants in Section III. Later on, we present the
experimental section of our study in Section IV. The
results of our experiments are in Section V and Section
VI. Furthermore, the main result of our study which is
motion segmentation is detailed in Section VI-A, which
is accompanied by reliability evaluation of the screw-
based invariants in Section VI-B and Section VI-C. We
present the conclusions of our study in Section VII.

II. BRIEF LITERATURE SURVEY

Motion segmentation algorithms aim to precisely
locate the start and end-points of a movement series,
which is important for both rehabilitation technology
and practice [11]. However, doing so from physical sen-
sors is very challenging [12]. Moreover, there is limited
work on motion segmentation using IMUs. To situate
our contribution, we present here a brief summary of
the relevant literature.

For gesture recognition, Fod et al. [12] present a
movement classification framework using perceptuo-
motor primitives. Similarly, Lin et al. in [11] present
a two-stage online segmentation protocol based on the
velocity features and stochastic modeling [11]. The
study by Aoki et al. [13], reformulates the motion
segmentation as a classification problem. This study
uses the absolute value of angular velocities to train a
k-NN classifier. Another related work presents SoSaLe-
invariants which aims to recover the invariants from a
Cartesian trajectory extracted from a video-feed [14].
However, in the context of IMUs, due to poor recovery
of Cartesian trajectory, this framework is unsuitable [7].
Therefore, our current work explores the possibility of
reliably extracting these motion segments from the IMU
data using the screw-based invariants [9], [10].

In motion analysis, many recent surveys summarise
the use of IMUs in walking, upper-body and full-body
motions [5]–[7]. During a squat task in human subjects,
the lower limb kinematics was derived by a single
IMU [15]. However, such a framework is limiting for
segmentation of three-dimensional movements spanning
several IMUs [15]. In gait analysis, uni-axial gyroscopes
have been used to detect various gait events [6], [16].
However, the data from tri-axial gyroscopes are com-
plex and need different computational analysis [16].

In our previous work [10], we explored the previously
less studied problem of motion segmentation using the
kinematic invariants based on motion capture data [12].
However, this framework has never been explored using
IMU sensors which we present below.

III. SCREW-BASED INVARIANTS: THEORY AND
INFORMATION PROCESSING

The building block of our kinematic information
processing is the body-fixed twist representation, which
is a 6D vector,

η =

[
ω
v

]
. (1)

Here, ω and v are the angular and the linear velocities
of the body-fixed frame with respect to the global-
fixed frame which is expressed in the body-fixed frame.
This choice of the reference frame is motivated by two
practical reasons. First, the global-fixed frame for IMU
processing is the gravity-frame. Extracting the gravity-
frame solely by the IMU information is challenging as
it leads to multiple solutions [6]. Second, IMUs are
internally-referenced sensors [6], which means that by
choosing a mathematical framework close to the natural
coordinates of the sensors, we can possibly enhance the
reliability of the motion segmentation.

From the time history of η in (1), the two geometric
invariants ω1 and v1 can be extracted [9]. These vari-
ables describe the motions of the twist-axis, and they
are defined as

ω1 = ω · ex, and v1 = v · ex. (2)

Here, ex is the unit vector representing the twist-axis.
The signs of ω1, v1 and ex in turn depend on the nature
of motion [9]. Unlike ω, v does depend on the choice
of the body-fixed coordinate system; therefore, v1 needs
to be compensated accordingly [9].

Mainly, the invariants in (2) can be used to compare
movements of different amplitudes and speed [9]. The
following time and amplitude normalizations make this
possible,

ω̄1(t̄) =
ω1(t)tf

Θ
, and v̄1(t̄) =

v1(t)tf
L

. (3)

Here, t̄ = t
tf

represents dimensionless time, where

tf being the final time. Additionally, Θ =
∫ tf

0
|ω1|dt

and L =
∫ tf

0
|v1|dt are the angular and linear scale

magnitudes. Note that the higher-order invariants in
[9] are currently excluded from analysis as they are
sensitive to noise [10].

Note that it is only the tri-axial gyroscopes of the
IMU that directly gives information regarding ω in (1).
However, the information about v in (1) needs to be
estimated from the tri-axial accelerometers using a two-
step process. First, as the accelerometers simultaneously
sense both acceleration due to motion and gravity,
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the acceleration due to gravity must be compensated.
Hence, the second sub-problem is to estimate the ve-
locity from this gravity-compensated acceleration. This
presents a non-trivial research question–as a naive in-
tegration of acceleration leads to velocity-drift [6]. The
next two subsections explore these two sub-problems in
detail.

A. Gravity Compensation

To compensate for the gravity component, it is
necessary to estimate the orientation of the IMU body-
fixed frame {XB,YB,ZB} with respect to the earth-
fixed gravity frame {XA,YA,ZA}. Let q̂ ∈ R4 be
the generalized unit quaternion. Consider a Eucledian
vector rA ∈ R4 in frame A which is transformed to
frame B by,

rB = q̂◦rA◦q̂∗, (4)

here, the operator (◦) represents quaternion multiplica-
tion and q̂∗ is the quaternion conjugate. This quaternion
can be estimated by solving the following equation [3],

ω̂ = 2q̂∗ ◦ ˙̂q. (5)

Here, ω̂ is the quaternion representing the angular veloc-
ity vector ω. To estimate the acceleration due to motion
a, the component due to the gravity is compensated by,

a = aB −RB
Aag. (6)

Here, aB is the raw accelerometer data and ag is the
acceleration due to gravity. The orientation matrix RB

A
is computed from the estimated quaternion q̂ in (5).
In the section below we present the integration of the
gravity compensated acceleration a.

B. Drift-free Integrator

Recall that simple integration of the acceleration
leads to the accumulation of the integration error which
results in drift [7]. Few studies have used Fourier-based
methods for drift-free integration [15], [17]. These
methods are unsuitable for our study as our motions
are far more complex and are three-dimensional, thus
violating preconditions for the Fourier-based integra-
tion. Therefore, we present a leaky integrator to address
this sub-problem. Unlike the Euler integrator, its leaky
counterpart purposefully forgets a part of the previous
output of the integrator; thereby, avoiding drift. This
integrator at time instant k is expressed as,

y(k) = αy(k − 1) + (1− α)x(k), (7)

here, α ∈ [0, 1] is the forgetting factor and x(k) is the
instantaneous input to the integrator. The choice of α is
further detailed in Section V.

M1

M2

M3

S1

S2

S3S4

Figure 2: The figure shows the optical markers (M1-M3)
placed on a wooden object together with the IMU sensors
(S1-S4).

IV. EXPERIMENTS AND DATA PROCESSING

The experiments for our study are divided into two
parts. First, we aim to arrive at the best choice of the
leaky integrator coefficient α in (7). Second, we aim to
extract the screw-based invariants of a rigid-IMU clus-
ter, which is guided by a humanoid robot. The motion
capture and robot kinematic data respectively act as a
ground-truth for our first and second set of experiments.
In the robot experiments, we aim to evaluate the effect
of the type and the speed of motion on the reliability
of the extracted screw-based invariants.

Four Shimmer3 IMU units were used for the data
collection during both of the experiments. Each Shim-
mer3 IMU unit has a tri-axial gyroscope (± 500 dps), a
tri-axial low-noise accelerometer (± 2 g) and a tri-axial
magnetometer (± 1.9 Ga). The data was streamed via
bluetooth and collected on a Dell Latitude Laptop with
the ConsensysPRO software at a rate of 120 Hz. Each
IMU was individually calibrated using the Shimmer 9-
DOF calibration interface. After the experiments, the
data from the cluster of IMU sensors were synchro-
nised offline using the ConsensysPRO software. Note
that the quaternion estimation in (5) is already custom
implemented in the ConsensysPRO interface using the
MARG (magnetic, angular-rate, gravity) algorithm [3].
Later on, all the collected data was processed offline.
During the offline processing all kinematic data was
filtered using a zero-phase Butterworth low-pass filter
with cut-off frequency of 6 Hz.

A. Experiment I: IMU with Motion Capture

As illustrated in Fig 2, a wooden object was chosen
for motion tacking. On this object, three passive markers
(M1-M3) were attached forming a right-angled triad.
Four Shimmer3 IMUs were attached in a random fash-
ion. This was to rule out the effect of sensor placement
on the data analysis. The motion capture was performed
at a rate of 120 frames per second (fps), using an
OptiTrack Motive system with 17 camera units.
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Robot End-effector

Figure 3: Illustrates the placement of the IMU sensor cluster
(S1-S4) rigidly attached to the wooden object placed on the
Baxter’s end-effector.

Four different movements were performed using
a hand-held wooden object as shown in Fig 2. The
movements are 1) Vertical Abduction-Adduction, 2)
Horizontal Abduction-Adduction, 3) Flexion-Extension,
and 4) Random movements. Except for the random
set of movements, all other movements were repeated
10 times. For a brief description of these movement
definitions please refer to [10].

Mainly, through Experiment I, we aim to motivate
the choice of the leaky integrator coefficient α in (7).
Therefore, with reference to Fig 2, from the passive
markers (M1-M3), the centroid triad velocity Cv was
computed using the forward difference approximation.
Later on, the velocity of each IMU v was computed
from the accelerometer data, using the leaky integrator
in (7). From these computed velocities, the mean veloc-
ity of the IMU cluster vm was computed. The results
of Experiment I is presented in Section V.

B. Experiment II: IMU with Baxter Robot

For our second set of experiments the same wooden
object in Experiment I was mounted with IMU sensors
(S1-S4) using double-sided tape. This rigid-IMU cluster
was fastened on the Baxter robot’s gripper with paper-
tape (see Fig 3). The Baxter is a dual-arm humanoid
robot with 7-DOF in each arm. Only the right-arm of
the Baxter was used in the experiments. The body-fixed
twist of the end-effector frame was recorded at a rate
of 120 Hz.

Recall that the main aim of the Experiment II
is to segment the motion reversals of a rigid-IMU
cluster using the screw-based invariants. To evaluate
this possibility, we choose two basic motions, namely:
vertical abduction-adduction and horizontal abduction-
adduction. The joint-S1 of the Baxter drives the vertical
abduction-adduction which leads to the forward and re-
verse motions in the Y-Z plane of the Baxter workspace
(see Fig 4). Similarly, the joint-S0 of the Baxter drives
the motion in the X-Y plane of the Baxter workspace
resulting in the horizontal abduction-adduction (see Fig
4). Note that the maximum available joint speed of
these motors are 2.0 rad/sec, however, for safety reasons
the movements were always kept at a lower speed.
Additionally, to evaluate the effect of the speed on
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Figure 5: The figure plots the RMSE values in (8). Various
activities verified include: 1) Vertical Abduction-Adduction
(0.2087 m/s), 2) Horizontal Abduction-Adduction (0.2819
m/s), 3) Flexion-Extension (0.2988 m/s), 4) Random (0.3129
m/s). The velocities mentioned in the brackets include mean
of ‖Cv‖ for each task.

the reliability of the invariants the basic motions were
performed with three different speed ratios, namely:
slow (0.1), medium (0.25) and fast (0.4). Each of the
basic motion types at a specific speed were repeated ten
times in a loop.

To evaluate the effect of motion-type on the reliabil-
ity of extracted screw-based invariants, we have chosen
two advanced motions (see Fig 4). Mainly, a helical-
type and lemniscate trajectories were chosen. Note that
as these motions are fairly complex; therefore, motion
segmentation is not a priority. Due to the complexity of
these motions, they were recorded by manually guiding
the robot’s end-effector through the desired path. Later
on, these trajectories were played back ten times each.
The results of Experiment II are in Section VI.

V. RESULTS AND DISCUSSION: EXPERIMENT I

In this section, we present the results of Experiment
I in which we compare the IMU with motion capture
data. To investigate the best choice of α, we vary α in
its range [0, 1]. For this purpose, we compute the root
mean square error (RMSE) between ‖Cv‖ and ‖vm‖,

RMSE =

√√√√√ N∑
n=1

(‖Cv‖ − ‖vm‖)2

N
. (8)

Fig 5 illustrates the computed RMSE values for the
four different motion types. Interestingly, we can see
a uniform trend in the mean RMSE values from Fig
5. This is not surprising, as the value of α increases,
the integrator forgets less leading to increased drift.
However, the intercept of the line is correlated with the
mean velocity of the trial. This is why the overall mean
RMSE plot for vertical abduction-adduction starts much
lower than other trials. Therefore, by choosing α = 0 we
would get the lowest possible RMSE; however, at the
price of zero integration-effect. By selecting α = 0.5,
a balance between integration-effect and error can be
obtained. Note that due to the forgetting factor, the
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Figure 4: The figure shows the end-effector trajectories for the four robot motions (A) Vertical Abduction-Adduction, (B)
Horizontal Abduction-Adduction, (C) Helical trajectory and (D) Lemniscate trajectory. The respective forward motions start
from the point 1 and end in 2 (blue). Similarly, the reverse motions start at 2 and end in 1 (green).

leaky integrator is poor at integrating high acceleration
data. In the next section, we present the results from
Experiment II.

VI. RESULTS AND DISCUSSION: EXPERIMENT II

This section opens by presenting the main results
of our study which is motion segmentation (see Section
VI-A). Furthermore, we analyse the reliability of these
screw-based invariants in Section VI-B and Section
VI-C. Note that during data analysis, it was found that
the data from sensor-S2 is faulty. Hence, we skip the
analysis of sensor-S2.

A. Motion Segmentation

The main aim of our paper is to reliably segment
the motion reversals of the rigid-IMU cluster in Fig
3. This is achieved by using the screw-based geo-
metric invariants presented in (3). During the vertical
abduction-adduction task (see Fig 6), the waveforms of
ω̄1 for all the IMU sensors and the robot kinematics
clearly superimpose. Irrespective of the speed of motion,
the transition from vertical abduction to adduction is
clearly marked by reversals of ω̄1. This is a fundamental
property of the screw-based invariants [9].

However, the waveforms of v̄1 in Fig 6 show only a
moderate agreement. Mainly, the invariant v̄1 undergoes
multiple stages of information processing. Therefore,
the error due to estimation and numerical processing
adds up leading to large variation. Additionally, the
electromagnetic fluctuation due to the robot hardware
might affect the accuracy of the orientation estimation.
Currently, due to the non-linear and time-varying nature
of the numerical processing; this error cannot be exactly
quantified [8]. Contrastingly, ω̄1 undergoes minimal
processing, which might explain its excellent agree-
ment. Results are similar for the horizontal abduction-
adduction trials (see Fig 7).

For complex motions, the extracted invariants are
presented in Fig 8. However, segmenting them is very
challenging as the constituent parts of these movements
are not exact geometric reversals. In the next two sub-
sections, we present the reliability analysis of the screw-
based invariants.

B. Inter-sensor Agreement

To evaluate the effect of the sensor placement, speed
and motion-type, we propose the correlation coefficients
Rω̄1

and Rv̄1 for ω̄1 and v̄1. These correlation coeffi-
cients for our dataset is succinctly summarised in Fig
9. Generally, a correlation coefficient of 0.8 or higher
shows good temporal agreement between the compared
signals.

For the basic motions, Rω̄1
shows very good agree-

ment even at different speeds. However, the effect of
motion speed on Rv̄1 shows random patterns. For com-
plex motions, both Rω̄1

and Rv̄1 shows random effects.
This means that during complex movements, it is very
challenging to ensure high-reliability of the screw-based
invariants. It might not be a limitation of the screw-
based invariants themselves. Importantly, recent studies
have shown that the dynamic accuracy of the off-the-
shelf IMUs does depend on the motion-type [8]. This
is why for complex motions, Rω̄1

for R-S1, R-S3 and
R-S4 shows low correlation (see the beige coloured plot
in Fig 9).

C. Measure of Reliability

Generally, it is very challenging to analyse the
consistency or reliability of kinematic variables which
are simultaneously extracted from different devices [18].
In such situations, simple summary statistics are an
ineffective measure of kinematic reliability [18]. There-
fore, we use the coefficient of multiple correlations
(CMC) proposed by Ferrari et al. [18]. Here, the CMC
measures the level of agreement or dispersion between
the kinematic variables. For a waveform Ygpf with G
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Figure 6: Plot shows the screw-based invariants extracted for the vertical abduction-adduction task. The various columns represent
the slow (solid), medium (dashed) and fast (dash-dotted) for ten repetitions.
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Table I: CMC values computed for different motion types and
speeds.

Type Speed CMC ω̄1 CMC v̄1

Slow 0.9296 0.1863i
Vertical Abduction-Adduction Medium 0.9876 0.3079i

Fast 0.9695 0.3311i
Slow 0.9566 0.2511i

Horizontal Abduction-Adduction Medium 0.9933 0.3874i
Fast 0.9347 0.0393i

Helical trajectory —- 0.5795 0.3438
Lemniscate trajectory —- 0.6063 0.6077

repetitions each consisting of Fg frames and P devices,

CMC =

√√√√√√√√√1−

G∑
g=1

[
P∑

p=1

Fg∑
f=1

(Ygpf − Ȳgf )2]/GFg(P − 1)

G∑
g=1

[
P∑

p=1

Fg∑
f=1

(Ygpf − Ȳg)2]/G(PFg − 1)

.

(9)

Here, Ȳgf is the mean waveform in the cycle across
the P devices and Ȳg is the grand mean [18], where
Fg changes with each G-th cycle. In general, a CMC
value of the range of 0.85 − 0.94 is considered to be
very good and that of 0.95 − 1 to be excellent. When
the dispersion level among the waveforms is high, the
CMC value becomes zero or a complex quantity [8],
[18].

The computed CMC values for our dataset is sum-
marised in Tab I. For basic motions, it is clear that the
CMC for the invariant ω̄1 shows very good to excellent
reliability. Contrastingly, CMC values for v̄1 are highly
unreliable which is very evident from the Fig 6 and Fig
7. For complex motions, the computed CMCs shows
only a moderate reliability.

VII. CONCLUSIONS AND FUTURE WORK

To conclude, through a series of experiments we
have shown that the normalised screw-based invariant
ω̄1 can reliably segment the motion reversals of a rigid-
IMU cluster. This is clear from the plots of ω̄1 in Fig
6, Fig 7 and the computed CMC values for ω̄1 for
basic motions in Tab I. Moreover, we have shown that
the reliability of ω̄1 is unaffected by sensor placement
or motion speed. However, the motion-type does affect
the reliability of the geometric invariant ω̄1. Note that
the reliability of the geometric invariant v̄1 needs to
be improved further. Therefore, in the near future, we
aim to improve the velocity estimation from the raw
accelerometer signals. In conclusion, we have shown
that the screw-based invariants can reliably segment the
motion reversals of a rigid-IMU cluster.
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